Loading…
On the index of G-spaces
With a G-space, where G is a compact Lie group, one can associate an ideal in the cohomology ring of the classifying space for G. It is called the ideal-valued index of the G-space. A filtration of the ideal-valued index that arises in a natural way from the Leray spectral sequence is considered. Pr...
Saved in:
Published in: | Sbornik. Mathematics 2000-10, Vol.191 (9) |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 9 |
container_start_page | |
container_title | Sbornik. Mathematics |
container_volume | 191 |
creator | Volovikov, A Yu |
description | With a G-space, where G is a compact Lie group, one can associate an ideal in the cohomology ring of the classifying space for G. It is called the ideal-valued index of the G-space. A filtration of the ideal-valued index that arises in a natural way from the Leray spectral sequence is considered. Properties of the index with filtration are studied and numerical indices are introduced. These indices are convenient for estimates of the G-category and the study of the set of critical points of a G-invariant functional defined on a manifold. A generalization of the Bourgin-Yang theorem for the index with filtration is proved. This result is used for estimates of the index of the space of partial coincidences for a map of a space with p-torus action in a Euclidean space. |
doi_str_mv | 10.1070/SM2000V191N09ABEH000504;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA) |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_21202962</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>21202962</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_212029623</originalsourceid><addsrcrecordid>eNqNjEFrwjAYhoNMsFPvHgte5qH6Jdas3U5ZiTWgidQo9FRKlmJFWiE9-PPnwB_g6X0eeHgR0hjmGD5hcdgRADjhGEuI2Q_fPGwF4XeijlJnuVoLuT_qLyE1zyTTQkm2ZVrtRMIlz9KcpVwm-YdgnM16yMMhjYIwAvL2YKBhsKKYDtC7c5f_Y4IjD01U43dn69fNr737beWngbuVxroR6lfl1dnxc4douuY62QSt6-rCmbqz5mzaprGmKwgmQGJKlq9VfwshQUE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the index of G-spaces</title><source>Institute of Physics</source><creator>Volovikov, A Yu</creator><creatorcontrib>Volovikov, A Yu</creatorcontrib><description>With a G-space, where G is a compact Lie group, one can associate an ideal in the cohomology ring of the classifying space for G. It is called the ideal-valued index of the G-space. A filtration of the ideal-valued index that arises in a natural way from the Leray spectral sequence is considered. Properties of the index with filtration are studied and numerical indices are introduced. These indices are convenient for estimates of the G-category and the study of the set of critical points of a G-invariant functional defined on a manifold. A generalization of the Bourgin-Yang theorem for the index with filtration is proved. This result is used for estimates of the index of the space of partial coincidences for a map of a space with p-torus action in a Euclidean space.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2000V191N09ABEH000504;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</identifier><language>eng</language><publisher>United States</publisher><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; EUCLIDEAN SPACE ; LIE GROUPS ; YANG THEOREM</subject><ispartof>Sbornik. Mathematics, 2000-10, Vol.191 (9)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21202962$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Volovikov, A Yu</creatorcontrib><title>On the index of G-spaces</title><title>Sbornik. Mathematics</title><description>With a G-space, where G is a compact Lie group, one can associate an ideal in the cohomology ring of the classifying space for G. It is called the ideal-valued index of the G-space. A filtration of the ideal-valued index that arises in a natural way from the Leray spectral sequence is considered. Properties of the index with filtration are studied and numerical indices are introduced. These indices are convenient for estimates of the G-category and the study of the set of critical points of a G-invariant functional defined on a manifold. A generalization of the Bourgin-Yang theorem for the index with filtration is proved. This result is used for estimates of the index of the space of partial coincidences for a map of a space with p-torus action in a Euclidean space.</description><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>EUCLIDEAN SPACE</subject><subject>LIE GROUPS</subject><subject>YANG THEOREM</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqNjEFrwjAYhoNMsFPvHgte5qH6Jdas3U5ZiTWgidQo9FRKlmJFWiE9-PPnwB_g6X0eeHgR0hjmGD5hcdgRADjhGEuI2Q_fPGwF4XeijlJnuVoLuT_qLyE1zyTTQkm2ZVrtRMIlz9KcpVwm-YdgnM16yMMhjYIwAvL2YKBhsKKYDtC7c5f_Y4IjD01U43dn69fNr737beWngbuVxroR6lfl1dnxc4douuY62QSt6-rCmbqz5mzaprGmKwgmQGJKlq9VfwshQUE</recordid><startdate>20001031</startdate><enddate>20001031</enddate><creator>Volovikov, A Yu</creator><scope>OTOTI</scope></search><sort><creationdate>20001031</creationdate><title>On the index of G-spaces</title><author>Volovikov, A Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_212029623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>EUCLIDEAN SPACE</topic><topic>LIE GROUPS</topic><topic>YANG THEOREM</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Volovikov, A Yu</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Volovikov, A Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the index of G-spaces</atitle><jtitle>Sbornik. Mathematics</jtitle><date>2000-10-31</date><risdate>2000</risdate><volume>191</volume><issue>9</issue><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>With a G-space, where G is a compact Lie group, one can associate an ideal in the cohomology ring of the classifying space for G. It is called the ideal-valued index of the G-space. A filtration of the ideal-valued index that arises in a natural way from the Leray spectral sequence is considered. Properties of the index with filtration are studied and numerical indices are introduced. These indices are convenient for estimates of the G-category and the study of the set of critical points of a G-invariant functional defined on a manifold. A generalization of the Bourgin-Yang theorem for the index with filtration is proved. This result is used for estimates of the index of the space of partial coincidences for a map of a space with p-torus action in a Euclidean space.</abstract><cop>United States</cop><doi>10.1070/SM2000V191N09ABEH000504;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2000-10, Vol.191 (9) |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_osti_scitechconnect_21202962 |
source | Institute of Physics |
subjects | CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS EUCLIDEAN SPACE LIE GROUPS YANG THEOREM |
title | On the index of G-spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A10%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20index%20of%20G-spaces&rft.jtitle=Sbornik.%20Mathematics&rft.au=Volovikov,%20A%20Yu&rft.date=2000-10-31&rft.volume=191&rft.issue=9&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2000V191N09ABEH000504;COUNTRYOFINPUT:INTERNATIONALATOMICENERGYAGENCY(IAEA)&rft_dat=%3Costi%3E21202962%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_212029623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |