Loading…
A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation
A jet-stirred reactor study of ethyl propanoate, a model biodiesel molecule, has been carried out at 10 atm pressure, using 0.1% fuel at equivalence ratios of 0.3, 0.6, 1.0 and 2.0 and at temperatures in the range 750 – 1100 K with a constant residence time of 0.7 seconds. Concentration profiles of...
Saved in:
Published in: | Combustion and flame 2009-01, Vol.156 (1), p.250-260 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813 |
---|---|
cites | cdi_FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813 |
container_end_page | 260 |
container_issue | 1 |
container_start_page | 250 |
container_title | Combustion and flame |
container_volume | 156 |
creator | Metcalfe, W.K. Togbé, C. Dagaut, P. Curran, H.J. Simmie, J.M. |
description | A jet-stirred reactor study of ethyl propanoate, a model biodiesel molecule, has been carried out at 10 atm pressure, using 0.1% fuel at equivalence ratios of 0.3, 0.6, 1.0 and 2.0 and at temperatures in the range
750
–
1100
K with a constant residence time of 0.7 seconds. Concentration profiles of ethyl propanoate were measured together with those of major intermediates, ethylene, propanoic acid, methane and formaldehyde, and major products, water, carbon dioxide and carbon monoxide. This data was used to further validate a previously published detailed chemical kinetic mechanism, containing 139 species and 790 reversible reactions. It was found that this mechanism required a significant increase in the rate constant of the six-centered unimolecular elimination reaction which produces ethylene and propanoic acid in order to correctly reproduce the measured concentrations of propanoic acid. The revised mechanism was then used to re-simulate shock tube ignition delay data with good agreement observed. Rate of production and sensitivity analyses were carried out under the experimental conditions, highlighting the importance that ethylene chemistry has on the overall reactivity of the system. |
doi_str_mv | 10.1016/j.combustflame.2008.09.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21227389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218008002770</els_id><sourcerecordid>1082204590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813</originalsourceid><addsrcrecordid>eNqNkUGP0zAQhSMEEmXhP1ggJDgkjJ2ktblVu8AiVXCBszW1J9QlsYvtrui_x1FWK44rH0ayPr95fq-qXnNoOPD1h2NjwrQ_pzyMOFEjAGQDqgHYPKlWvO_XtVCCP61WABxqwSU8r16kdIRCdG27qr5t2ZFynbKLkSyLhCaHyNBb9tt5ys6wKVganf_FUj7bCwsDo3y4jOwUwwl9wEws_HUWswv-ZfVswDHRq_t5Vf38_OnH9W29-_7l6_V2V5tOilxzFBYFSRhAErQ9Yo_UrkEozo00HW4GRLW3e2EFXwPZHk3bSd6qnnNZ5lX1ZtENxblOxmUyBxO8J5O14EJsWqkK9X6hDjjqU3QTxosO6PTtdqfnOxDzUepuVny3sOVbf86Usp5cMjSO6Cmck-YghYCN7NtHol2voKAfF9TEkFKk4cEGBz03qI_6_wb13KAGpUs_5fHb-z2YDI5DRG9celAQHNpiaLZ-s3BUEr9zFOdAyBuyLs552OAes-4fpaS2dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082204590</pqid></control><display><type>article</type><title>A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation</title><source>Elsevier</source><creator>Metcalfe, W.K. ; Togbé, C. ; Dagaut, P. ; Curran, H.J. ; Simmie, J.M.</creator><creatorcontrib>Metcalfe, W.K. ; Togbé, C. ; Dagaut, P. ; Curran, H.J. ; Simmie, J.M.</creatorcontrib><description>A jet-stirred reactor study of ethyl propanoate, a model biodiesel molecule, has been carried out at 10 atm pressure, using 0.1% fuel at equivalence ratios of 0.3, 0.6, 1.0 and 2.0 and at temperatures in the range
750
–
1100
K with a constant residence time of 0.7 seconds. Concentration profiles of ethyl propanoate were measured together with those of major intermediates, ethylene, propanoic acid, methane and formaldehyde, and major products, water, carbon dioxide and carbon monoxide. This data was used to further validate a previously published detailed chemical kinetic mechanism, containing 139 species and 790 reversible reactions. It was found that this mechanism required a significant increase in the rate constant of the six-centered unimolecular elimination reaction which produces ethylene and propanoic acid in order to correctly reproduce the measured concentrations of propanoic acid. The revised mechanism was then used to re-simulate shock tube ignition delay data with good agreement observed. Rate of production and sensitivity analyses were carried out under the experimental conditions, highlighting the importance that ethylene chemistry has on the overall reactivity of the system.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2008.09.007</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>ACTIVATION ENERGY ; ADVANCED PROPULSION SYSTEMS ; Applied sciences ; BIOFUELS ; CARBON DIOXIDE ; CARBON MONOXIDE ; CHEMICAL REACTION KINETICS ; Chemical Sciences ; Combustion ; Delay ; DIESEL FUELS ; Energy ; Energy. Thermal use of fuels ; Engineering Sciences ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Equivalence ratio ; Ethyl propanoate ; ETHYLENE ; Exact sciences and technology ; FORMALDEHYDE ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; JETS ; JSR ; METHANE ; Modeling ; or physical chemistry ; OXIDATION ; PRESSURE RANGE KILO PA ; Propanoic acid ; PROPIONIC ACID ; Reaction kinetics ; Reactive fluid environment ; Reactors ; SENSITIVITY ANALYSIS ; SIMULATION ; TEMPERATURE RANGE 0400-1000 K ; TEMPERATURE RANGE 1000-4000 K ; Theoretical and ; WATER</subject><ispartof>Combustion and flame, 2009-01, Vol.156 (1), p.250-260</ispartof><rights>2008 The Combustion Institute</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813</citedby><cites>FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813</cites><orcidid>0000-0003-4825-3288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21030781$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02020299$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21227389$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Metcalfe, W.K.</creatorcontrib><creatorcontrib>Togbé, C.</creatorcontrib><creatorcontrib>Dagaut, P.</creatorcontrib><creatorcontrib>Curran, H.J.</creatorcontrib><creatorcontrib>Simmie, J.M.</creatorcontrib><title>A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation</title><title>Combustion and flame</title><description>A jet-stirred reactor study of ethyl propanoate, a model biodiesel molecule, has been carried out at 10 atm pressure, using 0.1% fuel at equivalence ratios of 0.3, 0.6, 1.0 and 2.0 and at temperatures in the range
750
–
1100
K with a constant residence time of 0.7 seconds. Concentration profiles of ethyl propanoate were measured together with those of major intermediates, ethylene, propanoic acid, methane and formaldehyde, and major products, water, carbon dioxide and carbon monoxide. This data was used to further validate a previously published detailed chemical kinetic mechanism, containing 139 species and 790 reversible reactions. It was found that this mechanism required a significant increase in the rate constant of the six-centered unimolecular elimination reaction which produces ethylene and propanoic acid in order to correctly reproduce the measured concentrations of propanoic acid. The revised mechanism was then used to re-simulate shock tube ignition delay data with good agreement observed. Rate of production and sensitivity analyses were carried out under the experimental conditions, highlighting the importance that ethylene chemistry has on the overall reactivity of the system.</description><subject>ACTIVATION ENERGY</subject><subject>ADVANCED PROPULSION SYSTEMS</subject><subject>Applied sciences</subject><subject>BIOFUELS</subject><subject>CARBON DIOXIDE</subject><subject>CARBON MONOXIDE</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>Chemical Sciences</subject><subject>Combustion</subject><subject>Delay</subject><subject>DIESEL FUELS</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Equivalence ratio</subject><subject>Ethyl propanoate</subject><subject>ETHYLENE</subject><subject>Exact sciences and technology</subject><subject>FORMALDEHYDE</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>JETS</subject><subject>JSR</subject><subject>METHANE</subject><subject>Modeling</subject><subject>or physical chemistry</subject><subject>OXIDATION</subject><subject>PRESSURE RANGE KILO PA</subject><subject>Propanoic acid</subject><subject>PROPIONIC ACID</subject><subject>Reaction kinetics</subject><subject>Reactive fluid environment</subject><subject>Reactors</subject><subject>SENSITIVITY ANALYSIS</subject><subject>SIMULATION</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>TEMPERATURE RANGE 1000-4000 K</subject><subject>Theoretical and</subject><subject>WATER</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkUGP0zAQhSMEEmXhP1ggJDgkjJ2ktblVu8AiVXCBszW1J9QlsYvtrui_x1FWK44rH0ayPr95fq-qXnNoOPD1h2NjwrQ_pzyMOFEjAGQDqgHYPKlWvO_XtVCCP61WABxqwSU8r16kdIRCdG27qr5t2ZFynbKLkSyLhCaHyNBb9tt5ys6wKVganf_FUj7bCwsDo3y4jOwUwwl9wEws_HUWswv-ZfVswDHRq_t5Vf38_OnH9W29-_7l6_V2V5tOilxzFBYFSRhAErQ9Yo_UrkEozo00HW4GRLW3e2EFXwPZHk3bSd6qnnNZ5lX1ZtENxblOxmUyBxO8J5O14EJsWqkK9X6hDjjqU3QTxosO6PTtdqfnOxDzUepuVny3sOVbf86Usp5cMjSO6Cmck-YghYCN7NtHol2voKAfF9TEkFKk4cEGBz03qI_6_wb13KAGpUs_5fHb-z2YDI5DRG9celAQHNpiaLZ-s3BUEr9zFOdAyBuyLs552OAes-4fpaS2dw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Metcalfe, W.K.</creator><creator>Togbé, C.</creator><creator>Dagaut, P.</creator><creator>Curran, H.J.</creator><creator>Simmie, J.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4825-3288</orcidid></search><sort><creationdate>20090101</creationdate><title>A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation</title><author>Metcalfe, W.K. ; Togbé, C. ; Dagaut, P. ; Curran, H.J. ; Simmie, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ACTIVATION ENERGY</topic><topic>ADVANCED PROPULSION SYSTEMS</topic><topic>Applied sciences</topic><topic>BIOFUELS</topic><topic>CARBON DIOXIDE</topic><topic>CARBON MONOXIDE</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>Chemical Sciences</topic><topic>Combustion</topic><topic>Delay</topic><topic>DIESEL FUELS</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Equivalence ratio</topic><topic>Ethyl propanoate</topic><topic>ETHYLENE</topic><topic>Exact sciences and technology</topic><topic>FORMALDEHYDE</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>JETS</topic><topic>JSR</topic><topic>METHANE</topic><topic>Modeling</topic><topic>or physical chemistry</topic><topic>OXIDATION</topic><topic>PRESSURE RANGE KILO PA</topic><topic>Propanoic acid</topic><topic>PROPIONIC ACID</topic><topic>Reaction kinetics</topic><topic>Reactive fluid environment</topic><topic>Reactors</topic><topic>SENSITIVITY ANALYSIS</topic><topic>SIMULATION</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>TEMPERATURE RANGE 1000-4000 K</topic><topic>Theoretical and</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metcalfe, W.K.</creatorcontrib><creatorcontrib>Togbé, C.</creatorcontrib><creatorcontrib>Dagaut, P.</creatorcontrib><creatorcontrib>Curran, H.J.</creatorcontrib><creatorcontrib>Simmie, J.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metcalfe, W.K.</au><au>Togbé, C.</au><au>Dagaut, P.</au><au>Curran, H.J.</au><au>Simmie, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation</atitle><jtitle>Combustion and flame</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>156</volume><issue>1</issue><spage>250</spage><epage>260</epage><pages>250-260</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>A jet-stirred reactor study of ethyl propanoate, a model biodiesel molecule, has been carried out at 10 atm pressure, using 0.1% fuel at equivalence ratios of 0.3, 0.6, 1.0 and 2.0 and at temperatures in the range
750
–
1100
K with a constant residence time of 0.7 seconds. Concentration profiles of ethyl propanoate were measured together with those of major intermediates, ethylene, propanoic acid, methane and formaldehyde, and major products, water, carbon dioxide and carbon monoxide. This data was used to further validate a previously published detailed chemical kinetic mechanism, containing 139 species and 790 reversible reactions. It was found that this mechanism required a significant increase in the rate constant of the six-centered unimolecular elimination reaction which produces ethylene and propanoic acid in order to correctly reproduce the measured concentrations of propanoic acid. The revised mechanism was then used to re-simulate shock tube ignition delay data with good agreement observed. Rate of production and sensitivity analyses were carried out under the experimental conditions, highlighting the importance that ethylene chemistry has on the overall reactivity of the system.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2008.09.007</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4825-3288</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-2180 |
ispartof | Combustion and flame, 2009-01, Vol.156 (1), p.250-260 |
issn | 0010-2180 1556-2921 |
language | eng |
recordid | cdi_osti_scitechconnect_21227389 |
source | Elsevier |
subjects | ACTIVATION ENERGY ADVANCED PROPULSION SYSTEMS Applied sciences BIOFUELS CARBON DIOXIDE CARBON MONOXIDE CHEMICAL REACTION KINETICS Chemical Sciences Combustion Delay DIESEL FUELS Energy Energy. Thermal use of fuels Engineering Sciences Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Equivalence ratio Ethyl propanoate ETHYLENE Exact sciences and technology FORMALDEHYDE INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY JETS JSR METHANE Modeling or physical chemistry OXIDATION PRESSURE RANGE KILO PA Propanoic acid PROPIONIC ACID Reaction kinetics Reactive fluid environment Reactors SENSITIVITY ANALYSIS SIMULATION TEMPERATURE RANGE 0400-1000 K TEMPERATURE RANGE 1000-4000 K Theoretical and WATER |
title | A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20jet-stirred%20reactor%20and%20kinetic%20modeling%20study%20of%20ethyl%20propanoate%20oxidation&rft.jtitle=Combustion%20and%20flame&rft.au=Metcalfe,%20W.K.&rft.date=2009-01-01&rft.volume=156&rft.issue=1&rft.spage=250&rft.epage=260&rft.pages=250-260&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2008.09.007&rft_dat=%3Cproquest_osti_%3E1082204590%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082204590&rft_id=info:pmid/&rfr_iscdi=true |