Loading…

A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation

A jet-stirred reactor study of ethyl propanoate, a model biodiesel molecule, has been carried out at 10 atm pressure, using 0.1% fuel at equivalence ratios of 0.3, 0.6, 1.0 and 2.0 and at temperatures in the range 750 – 1100 K with a constant residence time of 0.7 seconds. Concentration profiles of...

Full description

Saved in:
Bibliographic Details
Published in:Combustion and flame 2009-01, Vol.156 (1), p.250-260
Main Authors: Metcalfe, W.K., Togbé, C., Dagaut, P., Curran, H.J., Simmie, J.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813
cites cdi_FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813
container_end_page 260
container_issue 1
container_start_page 250
container_title Combustion and flame
container_volume 156
creator Metcalfe, W.K.
Togbé, C.
Dagaut, P.
Curran, H.J.
Simmie, J.M.
description A jet-stirred reactor study of ethyl propanoate, a model biodiesel molecule, has been carried out at 10 atm pressure, using 0.1% fuel at equivalence ratios of 0.3, 0.6, 1.0 and 2.0 and at temperatures in the range 750 – 1100 K with a constant residence time of 0.7 seconds. Concentration profiles of ethyl propanoate were measured together with those of major intermediates, ethylene, propanoic acid, methane and formaldehyde, and major products, water, carbon dioxide and carbon monoxide. This data was used to further validate a previously published detailed chemical kinetic mechanism, containing 139 species and 790 reversible reactions. It was found that this mechanism required a significant increase in the rate constant of the six-centered unimolecular elimination reaction which produces ethylene and propanoic acid in order to correctly reproduce the measured concentrations of propanoic acid. The revised mechanism was then used to re-simulate shock tube ignition delay data with good agreement observed. Rate of production and sensitivity analyses were carried out under the experimental conditions, highlighting the importance that ethylene chemistry has on the overall reactivity of the system.
doi_str_mv 10.1016/j.combustflame.2008.09.007
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21227389</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010218008002770</els_id><sourcerecordid>1082204590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813</originalsourceid><addsrcrecordid>eNqNkUGP0zAQhSMEEmXhP1ggJDgkjJ2ktblVu8AiVXCBszW1J9QlsYvtrui_x1FWK44rH0ayPr95fq-qXnNoOPD1h2NjwrQ_pzyMOFEjAGQDqgHYPKlWvO_XtVCCP61WABxqwSU8r16kdIRCdG27qr5t2ZFynbKLkSyLhCaHyNBb9tt5ys6wKVganf_FUj7bCwsDo3y4jOwUwwl9wEws_HUWswv-ZfVswDHRq_t5Vf38_OnH9W29-_7l6_V2V5tOilxzFBYFSRhAErQ9Yo_UrkEozo00HW4GRLW3e2EFXwPZHk3bSd6qnnNZ5lX1ZtENxblOxmUyBxO8J5O14EJsWqkK9X6hDjjqU3QTxosO6PTtdqfnOxDzUepuVny3sOVbf86Usp5cMjSO6Cmck-YghYCN7NtHol2voKAfF9TEkFKk4cEGBz03qI_6_wb13KAGpUs_5fHb-z2YDI5DRG9celAQHNpiaLZ-s3BUEr9zFOdAyBuyLs552OAes-4fpaS2dw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082204590</pqid></control><display><type>article</type><title>A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation</title><source>Elsevier</source><creator>Metcalfe, W.K. ; Togbé, C. ; Dagaut, P. ; Curran, H.J. ; Simmie, J.M.</creator><creatorcontrib>Metcalfe, W.K. ; Togbé, C. ; Dagaut, P. ; Curran, H.J. ; Simmie, J.M.</creatorcontrib><description>A jet-stirred reactor study of ethyl propanoate, a model biodiesel molecule, has been carried out at 10 atm pressure, using 0.1% fuel at equivalence ratios of 0.3, 0.6, 1.0 and 2.0 and at temperatures in the range 750 – 1100 K with a constant residence time of 0.7 seconds. Concentration profiles of ethyl propanoate were measured together with those of major intermediates, ethylene, propanoic acid, methane and formaldehyde, and major products, water, carbon dioxide and carbon monoxide. This data was used to further validate a previously published detailed chemical kinetic mechanism, containing 139 species and 790 reversible reactions. It was found that this mechanism required a significant increase in the rate constant of the six-centered unimolecular elimination reaction which produces ethylene and propanoic acid in order to correctly reproduce the measured concentrations of propanoic acid. The revised mechanism was then used to re-simulate shock tube ignition delay data with good agreement observed. Rate of production and sensitivity analyses were carried out under the experimental conditions, highlighting the importance that ethylene chemistry has on the overall reactivity of the system.</description><identifier>ISSN: 0010-2180</identifier><identifier>EISSN: 1556-2921</identifier><identifier>DOI: 10.1016/j.combustflame.2008.09.007</identifier><identifier>CODEN: CBFMAO</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>ACTIVATION ENERGY ; ADVANCED PROPULSION SYSTEMS ; Applied sciences ; BIOFUELS ; CARBON DIOXIDE ; CARBON MONOXIDE ; CHEMICAL REACTION KINETICS ; Chemical Sciences ; Combustion ; Delay ; DIESEL FUELS ; Energy ; Energy. Thermal use of fuels ; Engineering Sciences ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Equivalence ratio ; Ethyl propanoate ; ETHYLENE ; Exact sciences and technology ; FORMALDEHYDE ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; JETS ; JSR ; METHANE ; Modeling ; or physical chemistry ; OXIDATION ; PRESSURE RANGE KILO PA ; Propanoic acid ; PROPIONIC ACID ; Reaction kinetics ; Reactive fluid environment ; Reactors ; SENSITIVITY ANALYSIS ; SIMULATION ; TEMPERATURE RANGE 0400-1000 K ; TEMPERATURE RANGE 1000-4000 K ; Theoretical and ; WATER</subject><ispartof>Combustion and flame, 2009-01, Vol.156 (1), p.250-260</ispartof><rights>2008 The Combustion Institute</rights><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813</citedby><cites>FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813</cites><orcidid>0000-0003-4825-3288</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21030781$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02020299$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/21227389$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Metcalfe, W.K.</creatorcontrib><creatorcontrib>Togbé, C.</creatorcontrib><creatorcontrib>Dagaut, P.</creatorcontrib><creatorcontrib>Curran, H.J.</creatorcontrib><creatorcontrib>Simmie, J.M.</creatorcontrib><title>A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation</title><title>Combustion and flame</title><description>A jet-stirred reactor study of ethyl propanoate, a model biodiesel molecule, has been carried out at 10 atm pressure, using 0.1% fuel at equivalence ratios of 0.3, 0.6, 1.0 and 2.0 and at temperatures in the range 750 – 1100 K with a constant residence time of 0.7 seconds. Concentration profiles of ethyl propanoate were measured together with those of major intermediates, ethylene, propanoic acid, methane and formaldehyde, and major products, water, carbon dioxide and carbon monoxide. This data was used to further validate a previously published detailed chemical kinetic mechanism, containing 139 species and 790 reversible reactions. It was found that this mechanism required a significant increase in the rate constant of the six-centered unimolecular elimination reaction which produces ethylene and propanoic acid in order to correctly reproduce the measured concentrations of propanoic acid. The revised mechanism was then used to re-simulate shock tube ignition delay data with good agreement observed. Rate of production and sensitivity analyses were carried out under the experimental conditions, highlighting the importance that ethylene chemistry has on the overall reactivity of the system.</description><subject>ACTIVATION ENERGY</subject><subject>ADVANCED PROPULSION SYSTEMS</subject><subject>Applied sciences</subject><subject>BIOFUELS</subject><subject>CARBON DIOXIDE</subject><subject>CARBON MONOXIDE</subject><subject>CHEMICAL REACTION KINETICS</subject><subject>Chemical Sciences</subject><subject>Combustion</subject><subject>Delay</subject><subject>DIESEL FUELS</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Equivalence ratio</subject><subject>Ethyl propanoate</subject><subject>ETHYLENE</subject><subject>Exact sciences and technology</subject><subject>FORMALDEHYDE</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>JETS</subject><subject>JSR</subject><subject>METHANE</subject><subject>Modeling</subject><subject>or physical chemistry</subject><subject>OXIDATION</subject><subject>PRESSURE RANGE KILO PA</subject><subject>Propanoic acid</subject><subject>PROPIONIC ACID</subject><subject>Reaction kinetics</subject><subject>Reactive fluid environment</subject><subject>Reactors</subject><subject>SENSITIVITY ANALYSIS</subject><subject>SIMULATION</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>TEMPERATURE RANGE 1000-4000 K</subject><subject>Theoretical and</subject><subject>WATER</subject><issn>0010-2180</issn><issn>1556-2921</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkUGP0zAQhSMEEmXhP1ggJDgkjJ2ktblVu8AiVXCBszW1J9QlsYvtrui_x1FWK44rH0ayPr95fq-qXnNoOPD1h2NjwrQ_pzyMOFEjAGQDqgHYPKlWvO_XtVCCP61WABxqwSU8r16kdIRCdG27qr5t2ZFynbKLkSyLhCaHyNBb9tt5ys6wKVganf_FUj7bCwsDo3y4jOwUwwl9wEws_HUWswv-ZfVswDHRq_t5Vf38_OnH9W29-_7l6_V2V5tOilxzFBYFSRhAErQ9Yo_UrkEozo00HW4GRLW3e2EFXwPZHk3bSd6qnnNZ5lX1ZtENxblOxmUyBxO8J5O14EJsWqkK9X6hDjjqU3QTxosO6PTtdqfnOxDzUepuVny3sOVbf86Usp5cMjSO6Cmck-YghYCN7NtHol2voKAfF9TEkFKk4cEGBz03qI_6_wb13KAGpUs_5fHb-z2YDI5DRG9celAQHNpiaLZ-s3BUEr9zFOdAyBuyLs552OAes-4fpaS2dw</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Metcalfe, W.K.</creator><creator>Togbé, C.</creator><creator>Dagaut, P.</creator><creator>Curran, H.J.</creator><creator>Simmie, J.M.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-4825-3288</orcidid></search><sort><creationdate>20090101</creationdate><title>A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation</title><author>Metcalfe, W.K. ; Togbé, C. ; Dagaut, P. ; Curran, H.J. ; Simmie, J.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ACTIVATION ENERGY</topic><topic>ADVANCED PROPULSION SYSTEMS</topic><topic>Applied sciences</topic><topic>BIOFUELS</topic><topic>CARBON DIOXIDE</topic><topic>CARBON MONOXIDE</topic><topic>CHEMICAL REACTION KINETICS</topic><topic>Chemical Sciences</topic><topic>Combustion</topic><topic>Delay</topic><topic>DIESEL FUELS</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Equivalence ratio</topic><topic>Ethyl propanoate</topic><topic>ETHYLENE</topic><topic>Exact sciences and technology</topic><topic>FORMALDEHYDE</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>JETS</topic><topic>JSR</topic><topic>METHANE</topic><topic>Modeling</topic><topic>or physical chemistry</topic><topic>OXIDATION</topic><topic>PRESSURE RANGE KILO PA</topic><topic>Propanoic acid</topic><topic>PROPIONIC ACID</topic><topic>Reaction kinetics</topic><topic>Reactive fluid environment</topic><topic>Reactors</topic><topic>SENSITIVITY ANALYSIS</topic><topic>SIMULATION</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>TEMPERATURE RANGE 1000-4000 K</topic><topic>Theoretical and</topic><topic>WATER</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Metcalfe, W.K.</creatorcontrib><creatorcontrib>Togbé, C.</creatorcontrib><creatorcontrib>Dagaut, P.</creatorcontrib><creatorcontrib>Curran, H.J.</creatorcontrib><creatorcontrib>Simmie, J.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Combustion and flame</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Metcalfe, W.K.</au><au>Togbé, C.</au><au>Dagaut, P.</au><au>Curran, H.J.</au><au>Simmie, J.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation</atitle><jtitle>Combustion and flame</jtitle><date>2009-01-01</date><risdate>2009</risdate><volume>156</volume><issue>1</issue><spage>250</spage><epage>260</epage><pages>250-260</pages><issn>0010-2180</issn><eissn>1556-2921</eissn><coden>CBFMAO</coden><abstract>A jet-stirred reactor study of ethyl propanoate, a model biodiesel molecule, has been carried out at 10 atm pressure, using 0.1% fuel at equivalence ratios of 0.3, 0.6, 1.0 and 2.0 and at temperatures in the range 750 – 1100 K with a constant residence time of 0.7 seconds. Concentration profiles of ethyl propanoate were measured together with those of major intermediates, ethylene, propanoic acid, methane and formaldehyde, and major products, water, carbon dioxide and carbon monoxide. This data was used to further validate a previously published detailed chemical kinetic mechanism, containing 139 species and 790 reversible reactions. It was found that this mechanism required a significant increase in the rate constant of the six-centered unimolecular elimination reaction which produces ethylene and propanoic acid in order to correctly reproduce the measured concentrations of propanoic acid. The revised mechanism was then used to re-simulate shock tube ignition delay data with good agreement observed. Rate of production and sensitivity analyses were carried out under the experimental conditions, highlighting the importance that ethylene chemistry has on the overall reactivity of the system.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.combustflame.2008.09.007</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4825-3288</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-2180
ispartof Combustion and flame, 2009-01, Vol.156 (1), p.250-260
issn 0010-2180
1556-2921
language eng
recordid cdi_osti_scitechconnect_21227389
source Elsevier
subjects ACTIVATION ENERGY
ADVANCED PROPULSION SYSTEMS
Applied sciences
BIOFUELS
CARBON DIOXIDE
CARBON MONOXIDE
CHEMICAL REACTION KINETICS
Chemical Sciences
Combustion
Delay
DIESEL FUELS
Energy
Energy. Thermal use of fuels
Engineering Sciences
Engines and turbines
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Equivalence ratio
Ethyl propanoate
ETHYLENE
Exact sciences and technology
FORMALDEHYDE
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
JETS
JSR
METHANE
Modeling
or physical chemistry
OXIDATION
PRESSURE RANGE KILO PA
Propanoic acid
PROPIONIC ACID
Reaction kinetics
Reactive fluid environment
Reactors
SENSITIVITY ANALYSIS
SIMULATION
TEMPERATURE RANGE 0400-1000 K
TEMPERATURE RANGE 1000-4000 K
Theoretical and
WATER
title A jet-stirred reactor and kinetic modeling study of ethyl propanoate oxidation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20jet-stirred%20reactor%20and%20kinetic%20modeling%20study%20of%20ethyl%20propanoate%20oxidation&rft.jtitle=Combustion%20and%20flame&rft.au=Metcalfe,%20W.K.&rft.date=2009-01-01&rft.volume=156&rft.issue=1&rft.spage=250&rft.epage=260&rft.pages=250-260&rft.issn=0010-2180&rft.eissn=1556-2921&rft.coden=CBFMAO&rft_id=info:doi/10.1016/j.combustflame.2008.09.007&rft_dat=%3Cproquest_osti_%3E1082204590%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-1a2da2e80f08e035aa5ae3602911c8c4a7faa9bdb2d2160ed5ac3481395118813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1082204590&rft_id=info:pmid/&rfr_iscdi=true