Loading…
A study of the turning points of a nems shuttle using td-scc-dftb
Nanoelectromechanical systems, of which the shuttle is one of the most fundamental, have theoretically been described mainly with phenomenological models with simplified interactions between the mobile part and the electrodes. Many microscopic methods, which in principle can give a more realistic pi...
Saved in:
Published in: | AIP conference proceedings 2009-01, Vol.1091 (1) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanoelectromechanical systems, of which the shuttle is one of the most fundamental, have theoretically been described mainly with phenomenological models with simplified interactions between the mobile part and the electrodes. Many microscopic methods, which in principle can give a more realistic picture of the shuttling process, are poorly suited for the dynamic non-equilibrium problem at hand. This is primarily due to the presence of several timescales associated with the mechanical motion, electronic relaxation within subsystems, and charge transfer between the mobile shuttle and the electrodes. The last timescale varies by many orders of magnitude during a shuttling cycle, which complicates many of the standard approaches. To overcome these difficulties, we use a TD-SCC-DFTB code developed in the Fraunhofer Institute for Mechanics of Materials (IWM) in Freiburg. The method, which is a well-tested approximation to TDDFT, couples the reliability of DFT with the efficiency of the TB approach. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.3082313 |