Loading…
Development of a dielectric-barrier discharge enhanced microplasma jet
A low-power ultrahigh-frequency-driven inductively coupled microplasma (ICMP) source equipped with dielectric-barrier discharge (DBD) was developed to realize a low-temperature and high-density plasma in fine quartz capillaries with inner diameters of less than 1.0 mm. A stable plasma was generated...
Saved in:
Published in: | Applied physics letters 2009-05, Vol.94 (19), p.191502-191502-3 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A low-power ultrahigh-frequency-driven inductively coupled microplasma (ICMP) source equipped with dielectric-barrier discharge (DBD) was developed to realize a low-temperature and high-density plasma in fine quartz capillaries with inner diameters of less than 1.0 mm. A stable plasma was generated and its sustainability was independent of the gas flow rate. This plasma jet had a longer plume than that of a thermoelectron-enhanced microplasma jet, and time-resolved characterization suggested interactions between ICMP and DBD jets. By optical emission spectroscopy characterization, the gas temperature and electron density inside a capillary were estimated to be 400-1000 K and
10
13
-
10
14
cm
−
3
, respectively. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.3130183 |