Loading…
Effects of nano-fluid and surfaces with nano structure on the increase of CHF
Critical heat flux (CHF) has necessitated inconvenient compromises between economy and safety in most industries related to thermal systems. Recent development of nanotechnology has enabled synthesis of nano-sized particles and development of new heat transfer fluids with suspended nano-sized partic...
Saved in:
Published in: | Experimental thermal and fluid science 2010-05, Vol.34 (4), p.487-495 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Critical heat flux (CHF) has necessitated inconvenient compromises between economy and safety in most industries related to thermal systems. Recent development of nanotechnology has enabled synthesis of nano-sized particles and development of new heat transfer fluids with suspended nano-sized particles, i.e., nanofluids. When nanofluids were used in boiling heat transfer cooling, anomalous increase of CHF was reported. Subsequently, nanoparticle deposition on the boiling surface was revealed to contribute to CHF enhancement. Research on surface characteristics determined that three major characteristics affect CHF: wettability, liquid spreadability and multi-scale geometry. We fabricated artificially modified surfaces with arrays of octagonal micro-posts, or ZnO nanorods, or both, and measured their performance in enhancing CHF. The presence of three major characteristics enhanced CHF most. |
---|---|
ISSN: | 0894-1777 1879-2286 |
DOI: | 10.1016/j.expthermflusci.2009.05.006 |