Loading…

Orbital symmetry and interference effects in molecular high-order harmonic generation

We investigate harmonic generation from H{sub 2}{sup +} molecules driven by intense few-cycle laser pulses whose linearly polarization axis makes an arbitrary angle {chi} with respect to the molecular axis. The H{sub 2}{sup +} molecule is considered initially in various orbitals with nodal planes. I...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2009-10, Vol.80 (4), Article 041403
Main Authors: Lagmago Kamta, G., Bandrauk, A. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate harmonic generation from H{sub 2}{sup +} molecules driven by intense few-cycle laser pulses whose linearly polarization axis makes an arbitrary angle {chi} with respect to the molecular axis. The H{sub 2}{sup +} molecule is considered initially in various orbitals with nodal planes. It is found that a strong enhancement of high-order harmonics (HOHs) occurs when the laser polarization axis overlaps with major axes of electron distribution in the active orbital, while broad suppression of HOHs occurs when the laser polarization axis is parallel to a nodal plane of the active molecular orbital. We show that this harmonic suppression is enhanced by destructive interferences when the nodal and the laser polarization axes are parallel to the internuclear axis, which leads to a shortening of the harmonic cutoff. It follows that the orientation dependence of HOHs intensities mimics the electronic density in active orbitals through the angular dependence of ionization and recombination processes.
ISSN:1050-2947
1094-1622
DOI:10.1103/PhysRevA.80.041403