Loading…

Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators

This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here foc...

Full description

Saved in:
Bibliographic Details
Published in:Annals of physics 2010-05, Vol.325 (5), p.1135-1172
Main Authors: Jentschura, Ulrich D., Surzhykov, Andrey, Zinn-Justin, Jean
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3
cites cdi_FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3
container_end_page 1172
container_issue 5
container_start_page 1135
container_title Annals of physics
container_volume 325
creator Jentschura, Ulrich D.
Surzhykov, Andrey
Zinn-Justin, Jean
description This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here focus on simple even and odd anharmonic oscillators for arbitrary magnitude and complex phase of the coupling parameter. A unification is achieved by the use of PT -symmetry inspired dispersion relations and generalized quantization conditions that include instanton configurations. Higher-order formulas are provided for the oscillators of degrees 3 to 8, which lead to subleading corrections to the leading factorial growth of the perturbative coefficients describing the resonance energies. Numerical results are provided, and higher-order terms are found to be numerically significant. The resonances are described by generalized expansions involving intertwined nonanalytic exponentials, logarithmic terms and power series. Finally, we summarize spectral properties and dispersion relations of anharmonic oscillators, and their interconnections. The purpose is to look at one of the classic problems of quantum theory from a new perspective, through which we gain systematic access to the phenomenologically significant higher-order terms.
doi_str_mv 10.1016/j.aop.2010.01.002
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21336130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491610000059</els_id><sourcerecordid>2257228991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3</originalsourceid><addsrcrecordid>eNp9kMFuGyEQhlHUSHGTPkBvq_S8zszCYjY9VVGTWnKVSyNFuSCWHRQsG1zAVvr2xXXOPY0Q3w__fIx9RpgjoLxZz03czTuoZ8A5QHfGZgiDbIH3zx_YDAB4KwaUF-xjzmsARNGrGXv5ud8U3_qQiwklhtyYMDX0ZmxpEuV6mZvlcnnbPAXvvDXFx9BE19CBwj80TlOdryZtY_C2idn6zcaUmPIVO3dmk-nT-7xkT_fff939aFePD8u7b6vWComlXfRCdQsOyvBunHrh7DiNhjulSJJwTpKyxEcjzTQIMQ5kEXojwOCgRgTHL9mX07sxF6_r_4Xsq40hkC26Q84lcqjU9Ynapfh7T7noddynUItpJYaqkEtVITxBNsWcEzm9S35r0h-NoI-e9VpXz_roWQPq6rlmvp4yVHc8eErHChQsTT4dG0zR_yf9F5O9hc0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849016368</pqid></control><display><type>article</type><title>Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators</title><source>ScienceDirect Journals</source><creator>Jentschura, Ulrich D. ; Surzhykov, Andrey ; Zinn-Justin, Jean</creator><creatorcontrib>Jentschura, Ulrich D. ; Surzhykov, Andrey ; Zinn-Justin, Jean</creatorcontrib><description>This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here focus on simple even and odd anharmonic oscillators for arbitrary magnitude and complex phase of the coupling parameter. A unification is achieved by the use of PT -symmetry inspired dispersion relations and generalized quantization conditions that include instanton configurations. Higher-order formulas are provided for the oscillators of degrees 3 to 8, which lead to subleading corrections to the leading factorial growth of the perturbative coefficients describing the resonance energies. Numerical results are provided, and higher-order terms are found to be numerically significant. The resonances are described by generalized expansions involving intertwined nonanalytic exponentials, logarithmic terms and power series. Finally, we summarize spectral properties and dispersion relations of anharmonic oscillators, and their interconnections. The purpose is to look at one of the classic problems of quantum theory from a new perspective, through which we gain systematic access to the phenomenologically significant higher-order terms.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2010.01.002</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ANHARMONIC OSCILLATORS ; Asymptotic problems and properties ; ASYMPTOTIC SOLUTIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DISPERSION RELATIONS ; ENERGY LEVELS ; General properties of perturbation theory ; INSTANTONS ; OSCILLATORS ; PERTURBATION THEORY ; POWER SERIES ; QUANTIZATION ; Quantum physics ; Quantum theory ; RESONANCE ; Summation of perturbation theory ; SYMMETRY</subject><ispartof>Annals of physics, 2010-05, Vol.325 (5), p.1135-1172</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3</citedby><cites>FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21336130$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jentschura, Ulrich D.</creatorcontrib><creatorcontrib>Surzhykov, Andrey</creatorcontrib><creatorcontrib>Zinn-Justin, Jean</creatorcontrib><title>Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators</title><title>Annals of physics</title><description>This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here focus on simple even and odd anharmonic oscillators for arbitrary magnitude and complex phase of the coupling parameter. A unification is achieved by the use of PT -symmetry inspired dispersion relations and generalized quantization conditions that include instanton configurations. Higher-order formulas are provided for the oscillators of degrees 3 to 8, which lead to subleading corrections to the leading factorial growth of the perturbative coefficients describing the resonance energies. Numerical results are provided, and higher-order terms are found to be numerically significant. The resonances are described by generalized expansions involving intertwined nonanalytic exponentials, logarithmic terms and power series. Finally, we summarize spectral properties and dispersion relations of anharmonic oscillators, and their interconnections. The purpose is to look at one of the classic problems of quantum theory from a new perspective, through which we gain systematic access to the phenomenologically significant higher-order terms.</description><subject>ANHARMONIC OSCILLATORS</subject><subject>Asymptotic problems and properties</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DISPERSION RELATIONS</subject><subject>ENERGY LEVELS</subject><subject>General properties of perturbation theory</subject><subject>INSTANTONS</subject><subject>OSCILLATORS</subject><subject>PERTURBATION THEORY</subject><subject>POWER SERIES</subject><subject>QUANTIZATION</subject><subject>Quantum physics</subject><subject>Quantum theory</subject><subject>RESONANCE</subject><subject>Summation of perturbation theory</subject><subject>SYMMETRY</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuGyEQhlHUSHGTPkBvq_S8zszCYjY9VVGTWnKVSyNFuSCWHRQsG1zAVvr2xXXOPY0Q3w__fIx9RpgjoLxZz03czTuoZ8A5QHfGZgiDbIH3zx_YDAB4KwaUF-xjzmsARNGrGXv5ud8U3_qQiwklhtyYMDX0ZmxpEuV6mZvlcnnbPAXvvDXFx9BE19CBwj80TlOdryZtY_C2idn6zcaUmPIVO3dmk-nT-7xkT_fff939aFePD8u7b6vWComlXfRCdQsOyvBunHrh7DiNhjulSJJwTpKyxEcjzTQIMQ5kEXojwOCgRgTHL9mX07sxF6_r_4Xsq40hkC26Q84lcqjU9Ynapfh7T7noddynUItpJYaqkEtVITxBNsWcEzm9S35r0h-NoI-e9VpXz_roWQPq6rlmvp4yVHc8eErHChQsTT4dG0zR_yf9F5O9hc0</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Jentschura, Ulrich D.</creator><creator>Surzhykov, Andrey</creator><creator>Zinn-Justin, Jean</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20100501</creationdate><title>Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators</title><author>Jentschura, Ulrich D. ; Surzhykov, Andrey ; Zinn-Justin, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ANHARMONIC OSCILLATORS</topic><topic>Asymptotic problems and properties</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DISPERSION RELATIONS</topic><topic>ENERGY LEVELS</topic><topic>General properties of perturbation theory</topic><topic>INSTANTONS</topic><topic>OSCILLATORS</topic><topic>PERTURBATION THEORY</topic><topic>POWER SERIES</topic><topic>QUANTIZATION</topic><topic>Quantum physics</topic><topic>Quantum theory</topic><topic>RESONANCE</topic><topic>Summation of perturbation theory</topic><topic>SYMMETRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jentschura, Ulrich D.</creatorcontrib><creatorcontrib>Surzhykov, Andrey</creatorcontrib><creatorcontrib>Zinn-Justin, Jean</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jentschura, Ulrich D.</au><au>Surzhykov, Andrey</au><au>Zinn-Justin, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators</atitle><jtitle>Annals of physics</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>325</volume><issue>5</issue><spage>1135</spage><epage>1172</epage><pages>1135-1172</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here focus on simple even and odd anharmonic oscillators for arbitrary magnitude and complex phase of the coupling parameter. A unification is achieved by the use of PT -symmetry inspired dispersion relations and generalized quantization conditions that include instanton configurations. Higher-order formulas are provided for the oscillators of degrees 3 to 8, which lead to subleading corrections to the leading factorial growth of the perturbative coefficients describing the resonance energies. Numerical results are provided, and higher-order terms are found to be numerically significant. The resonances are described by generalized expansions involving intertwined nonanalytic exponentials, logarithmic terms and power series. Finally, we summarize spectral properties and dispersion relations of anharmonic oscillators, and their interconnections. The purpose is to look at one of the classic problems of quantum theory from a new perspective, through which we gain systematic access to the phenomenologically significant higher-order terms.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2010.01.002</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2010-05, Vol.325 (5), p.1135-1172
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_21336130
source ScienceDirect Journals
subjects ANHARMONIC OSCILLATORS
Asymptotic problems and properties
ASYMPTOTIC SOLUTIONS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DISPERSION RELATIONS
ENERGY LEVELS
General properties of perturbation theory
INSTANTONS
OSCILLATORS
PERTURBATION THEORY
POWER SERIES
QUANTIZATION
Quantum physics
Quantum theory
RESONANCE
Summation of perturbation theory
SYMMETRY
title Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-instantons%20and%20exact%20results%20III:%20Unification%20of%20even%20and%20odd%20anharmonic%20oscillators&rft.jtitle=Annals%20of%20physics&rft.au=Jentschura,%20Ulrich%20D.&rft.date=2010-05-01&rft.volume=325&rft.issue=5&rft.spage=1135&rft.epage=1172&rft.pages=1135-1172&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2010.01.002&rft_dat=%3Cproquest_osti_%3E2257228991%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849016368&rft_id=info:pmid/&rfr_iscdi=true