Loading…
Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators
This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here foc...
Saved in:
Published in: | Annals of physics 2010-05, Vol.325 (5), p.1135-1172 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3 |
container_end_page | 1172 |
container_issue | 5 |
container_start_page | 1135 |
container_title | Annals of physics |
container_volume | 325 |
creator | Jentschura, Ulrich D. Surzhykov, Andrey Zinn-Justin, Jean |
description | This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here focus on simple even and odd anharmonic oscillators for arbitrary magnitude and complex phase of the coupling parameter. A unification is achieved by the use of
PT
-symmetry inspired dispersion relations and generalized quantization conditions that include instanton configurations. Higher-order formulas are provided for the oscillators of degrees 3 to 8, which lead to subleading corrections to the leading factorial growth of the perturbative coefficients describing the resonance energies. Numerical results are provided, and higher-order terms are found to be numerically significant. The resonances are described by generalized expansions involving intertwined nonanalytic exponentials, logarithmic terms and power series. Finally, we summarize spectral properties and dispersion relations of anharmonic oscillators, and their interconnections. The purpose is to look at one of the classic problems of quantum theory from a new perspective, through which we gain systematic access to the phenomenologically significant higher-order terms. |
doi_str_mv | 10.1016/j.aop.2010.01.002 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21336130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491610000059</els_id><sourcerecordid>2257228991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3</originalsourceid><addsrcrecordid>eNp9kMFuGyEQhlHUSHGTPkBvq_S8zszCYjY9VVGTWnKVSyNFuSCWHRQsG1zAVvr2xXXOPY0Q3w__fIx9RpgjoLxZz03czTuoZ8A5QHfGZgiDbIH3zx_YDAB4KwaUF-xjzmsARNGrGXv5ud8U3_qQiwklhtyYMDX0ZmxpEuV6mZvlcnnbPAXvvDXFx9BE19CBwj80TlOdryZtY_C2idn6zcaUmPIVO3dmk-nT-7xkT_fff939aFePD8u7b6vWComlXfRCdQsOyvBunHrh7DiNhjulSJJwTpKyxEcjzTQIMQ5kEXojwOCgRgTHL9mX07sxF6_r_4Xsq40hkC26Q84lcqjU9Ynapfh7T7noddynUItpJYaqkEtVITxBNsWcEzm9S35r0h-NoI-e9VpXz_roWQPq6rlmvp4yVHc8eErHChQsTT4dG0zR_yf9F5O9hc0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849016368</pqid></control><display><type>article</type><title>Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators</title><source>ScienceDirect Journals</source><creator>Jentschura, Ulrich D. ; Surzhykov, Andrey ; Zinn-Justin, Jean</creator><creatorcontrib>Jentschura, Ulrich D. ; Surzhykov, Andrey ; Zinn-Justin, Jean</creatorcontrib><description>This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here focus on simple even and odd anharmonic oscillators for arbitrary magnitude and complex phase of the coupling parameter. A unification is achieved by the use of
PT
-symmetry inspired dispersion relations and generalized quantization conditions that include instanton configurations. Higher-order formulas are provided for the oscillators of degrees 3 to 8, which lead to subleading corrections to the leading factorial growth of the perturbative coefficients describing the resonance energies. Numerical results are provided, and higher-order terms are found to be numerically significant. The resonances are described by generalized expansions involving intertwined nonanalytic exponentials, logarithmic terms and power series. Finally, we summarize spectral properties and dispersion relations of anharmonic oscillators, and their interconnections. The purpose is to look at one of the classic problems of quantum theory from a new perspective, through which we gain systematic access to the phenomenologically significant higher-order terms.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2010.01.002</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ANHARMONIC OSCILLATORS ; Asymptotic problems and properties ; ASYMPTOTIC SOLUTIONS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DISPERSION RELATIONS ; ENERGY LEVELS ; General properties of perturbation theory ; INSTANTONS ; OSCILLATORS ; PERTURBATION THEORY ; POWER SERIES ; QUANTIZATION ; Quantum physics ; Quantum theory ; RESONANCE ; Summation of perturbation theory ; SYMMETRY</subject><ispartof>Annals of physics, 2010-05, Vol.325 (5), p.1135-1172</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3</citedby><cites>FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21336130$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jentschura, Ulrich D.</creatorcontrib><creatorcontrib>Surzhykov, Andrey</creatorcontrib><creatorcontrib>Zinn-Justin, Jean</creatorcontrib><title>Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators</title><title>Annals of physics</title><description>This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here focus on simple even and odd anharmonic oscillators for arbitrary magnitude and complex phase of the coupling parameter. A unification is achieved by the use of
PT
-symmetry inspired dispersion relations and generalized quantization conditions that include instanton configurations. Higher-order formulas are provided for the oscillators of degrees 3 to 8, which lead to subleading corrections to the leading factorial growth of the perturbative coefficients describing the resonance energies. Numerical results are provided, and higher-order terms are found to be numerically significant. The resonances are described by generalized expansions involving intertwined nonanalytic exponentials, logarithmic terms and power series. Finally, we summarize spectral properties and dispersion relations of anharmonic oscillators, and their interconnections. The purpose is to look at one of the classic problems of quantum theory from a new perspective, through which we gain systematic access to the phenomenologically significant higher-order terms.</description><subject>ANHARMONIC OSCILLATORS</subject><subject>Asymptotic problems and properties</subject><subject>ASYMPTOTIC SOLUTIONS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DISPERSION RELATIONS</subject><subject>ENERGY LEVELS</subject><subject>General properties of perturbation theory</subject><subject>INSTANTONS</subject><subject>OSCILLATORS</subject><subject>PERTURBATION THEORY</subject><subject>POWER SERIES</subject><subject>QUANTIZATION</subject><subject>Quantum physics</subject><subject>Quantum theory</subject><subject>RESONANCE</subject><subject>Summation of perturbation theory</subject><subject>SYMMETRY</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuGyEQhlHUSHGTPkBvq_S8zszCYjY9VVGTWnKVSyNFuSCWHRQsG1zAVvr2xXXOPY0Q3w__fIx9RpgjoLxZz03czTuoZ8A5QHfGZgiDbIH3zx_YDAB4KwaUF-xjzmsARNGrGXv5ud8U3_qQiwklhtyYMDX0ZmxpEuV6mZvlcnnbPAXvvDXFx9BE19CBwj80TlOdryZtY_C2idn6zcaUmPIVO3dmk-nT-7xkT_fff939aFePD8u7b6vWComlXfRCdQsOyvBunHrh7DiNhjulSJJwTpKyxEcjzTQIMQ5kEXojwOCgRgTHL9mX07sxF6_r_4Xsq40hkC26Q84lcqjU9Ynapfh7T7noddynUItpJYaqkEtVITxBNsWcEzm9S35r0h-NoI-e9VpXz_roWQPq6rlmvp4yVHc8eErHChQsTT4dG0zR_yf9F5O9hc0</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Jentschura, Ulrich D.</creator><creator>Surzhykov, Andrey</creator><creator>Zinn-Justin, Jean</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20100501</creationdate><title>Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators</title><author>Jentschura, Ulrich D. ; Surzhykov, Andrey ; Zinn-Justin, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ANHARMONIC OSCILLATORS</topic><topic>Asymptotic problems and properties</topic><topic>ASYMPTOTIC SOLUTIONS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DISPERSION RELATIONS</topic><topic>ENERGY LEVELS</topic><topic>General properties of perturbation theory</topic><topic>INSTANTONS</topic><topic>OSCILLATORS</topic><topic>PERTURBATION THEORY</topic><topic>POWER SERIES</topic><topic>QUANTIZATION</topic><topic>Quantum physics</topic><topic>Quantum theory</topic><topic>RESONANCE</topic><topic>Summation of perturbation theory</topic><topic>SYMMETRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jentschura, Ulrich D.</creatorcontrib><creatorcontrib>Surzhykov, Andrey</creatorcontrib><creatorcontrib>Zinn-Justin, Jean</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jentschura, Ulrich D.</au><au>Surzhykov, Andrey</au><au>Zinn-Justin, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators</atitle><jtitle>Annals of physics</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>325</volume><issue>5</issue><spage>1135</spage><epage>1172</epage><pages>1135-1172</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>This is the third article in a series of three papers on the resonance energy levels of anharmonic oscillators. Whereas the first two papers mainly dealt with double-well potentials and modifications thereof [see J. Zinn-Justin, U.D. Jentschura, Ann. Phys. (N.Y.) 313 (2004) 197 and 269], we here focus on simple even and odd anharmonic oscillators for arbitrary magnitude and complex phase of the coupling parameter. A unification is achieved by the use of
PT
-symmetry inspired dispersion relations and generalized quantization conditions that include instanton configurations. Higher-order formulas are provided for the oscillators of degrees 3 to 8, which lead to subleading corrections to the leading factorial growth of the perturbative coefficients describing the resonance energies. Numerical results are provided, and higher-order terms are found to be numerically significant. The resonances are described by generalized expansions involving intertwined nonanalytic exponentials, logarithmic terms and power series. Finally, we summarize spectral properties and dispersion relations of anharmonic oscillators, and their interconnections. The purpose is to look at one of the classic problems of quantum theory from a new perspective, through which we gain systematic access to the phenomenologically significant higher-order terms.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2010.01.002</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 2010-05, Vol.325 (5), p.1135-1172 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_osti_scitechconnect_21336130 |
source | ScienceDirect Journals |
subjects | ANHARMONIC OSCILLATORS Asymptotic problems and properties ASYMPTOTIC SOLUTIONS CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS DISPERSION RELATIONS ENERGY LEVELS General properties of perturbation theory INSTANTONS OSCILLATORS PERTURBATION THEORY POWER SERIES QUANTIZATION Quantum physics Quantum theory RESONANCE Summation of perturbation theory SYMMETRY |
title | Multi-instantons and exact results III: Unification of even and odd anharmonic oscillators |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T10%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-instantons%20and%20exact%20results%20III:%20Unification%20of%20even%20and%20odd%20anharmonic%20oscillators&rft.jtitle=Annals%20of%20physics&rft.au=Jentschura,%20Ulrich%20D.&rft.date=2010-05-01&rft.volume=325&rft.issue=5&rft.spage=1135&rft.epage=1172&rft.pages=1135-1172&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2010.01.002&rft_dat=%3Cproquest_osti_%3E2257228991%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c461t-754827308a32bd54fcbdba3f88e6e4ff6e8ce3ba6ad944b9ec105a40a198b10f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849016368&rft_id=info:pmid/&rfr_iscdi=true |