Loading…

Perturbation theory analysis of attosecond photoionization

Ionization of an atom by a few-cycle attosecond xuv pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. Within the PT approach, we present an ab initio parametrization of the ionized electron angular distribution...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2009-12, Vol.80 (6), Article 063403
Main Authors: Pronin, E. A., Starace, Anthony F., Frolov, M. V., Manakov, N. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-dc85ee4d13c29a4ca560dbb5efe60126b118d235eacde9f5c59709a0036f7ac73
cites cdi_FETCH-LOGICAL-c368t-dc85ee4d13c29a4ca560dbb5efe60126b118d235eacde9f5c59709a0036f7ac73
container_end_page
container_issue 6
container_start_page
container_title Physical review. A, Atomic, molecular, and optical physics
container_volume 80
creator Pronin, E. A.
Starace, Anthony F.
Frolov, M. V.
Manakov, N. L.
description Ionization of an atom by a few-cycle attosecond xuv pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. Within the PT approach, we present an ab initio parametrization of the ionized electron angular distribution (AD) using rotational invariance and symmetry arguments. This parametrization gives analytically the dependence of the AD on the carrier envelope phase (CEP), the polarization of the pulse, and on the ionized electron momentum direction, p. For the general case of an elliptically polarized pulse, we show that interference of the first- and second-order transition amplitudes causes a CEP-dependent asymmetry (with respect to p->-p) and both elliptic and circular dichroism effects. All of these effects are maximal in the polarization plane and depend not only on the CEP but also on the phase of dynamical atomic parameters that enter our parametrization of the AD. Within the single active electron model of an atom, for an initial s or p state we define all dynamical parameters in terms of radial matrix elements (analytic expressions for which are given for the Coulomb and zero-range potentials). For ionization of the H atom by linearly polarized pulses, our PT results are in excellent agreement with results of numerical solutions of the time-dependent Schroedinger equation of Peng et al.[New J. Phys. 10, 025030 (2008)]. Also, our numerical results show that the asymmetries and dichroism effects at low electron energies have a different physical origin from those at high electron energies. Moreover, our results for Gaussian and cosine-squared pulse shapes are in good qualitative agreement. Finally, we show that our analytic formulas may prove useful for determining few-cycle extreme ultraviolet (xuv) pulse characteristics, such as the CEP and the polarization.
doi_str_mv 10.1103/PhysRevA.80.063403
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21352370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevA_80_063403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-dc85ee4d13c29a4ca560dbb5efe60126b118d235eacde9f5c59709a0036f7ac73</originalsourceid><addsrcrecordid>eNo1kE1LxDAURYMoOI7-AVcF160vn23cDYOOwoCD6Dqk6SutjM2QRKH-ejtW3-a-xeFyOYRcUygoBX6768b4gl-rooICFBfAT8iCghY5VYydHn8JOdOiPCcXMb7DdKLSC3K3w5A-Q21T74csdejDmNnB7sfYx8y3mU3JR3R-aLJD55OfsP77l74kZ63dR7z6yyV5e7h_XT_m2-fN03q1zR1XVcobV0lE0VDumLbCWamgqWuJLSqgTNWUVg3jEq1rULfSSV2CtgBctaV1JV-Sm7nXx9Sb6PqErpsGDeiSYZRLxkuYKDZTLvgYA7bmEPoPG0ZDwRwdmX9HpgIzO-I_PXtdKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Perturbation theory analysis of attosecond photoionization</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Pronin, E. A. ; Starace, Anthony F. ; Frolov, M. V. ; Manakov, N. L.</creator><creatorcontrib>Pronin, E. A. ; Starace, Anthony F. ; Frolov, M. V. ; Manakov, N. L.</creatorcontrib><description>Ionization of an atom by a few-cycle attosecond xuv pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. Within the PT approach, we present an ab initio parametrization of the ionized electron angular distribution (AD) using rotational invariance and symmetry arguments. This parametrization gives analytically the dependence of the AD on the carrier envelope phase (CEP), the polarization of the pulse, and on the ionized electron momentum direction, p. For the general case of an elliptically polarized pulse, we show that interference of the first- and second-order transition amplitudes causes a CEP-dependent asymmetry (with respect to p-&gt;-p) and both elliptic and circular dichroism effects. All of these effects are maximal in the polarization plane and depend not only on the CEP but also on the phase of dynamical atomic parameters that enter our parametrization of the AD. Within the single active electron model of an atom, for an initial s or p state we define all dynamical parameters in terms of radial matrix elements (analytic expressions for which are given for the Coulomb and zero-range potentials). For ionization of the H atom by linearly polarized pulses, our PT results are in excellent agreement with results of numerical solutions of the time-dependent Schroedinger equation of Peng et al.[New J. Phys. 10, 025030 (2008)]. Also, our numerical results show that the asymmetries and dichroism effects at low electron energies have a different physical origin from those at high electron energies. Moreover, our results for Gaussian and cosine-squared pulse shapes are in good qualitative agreement. Finally, we show that our analytic formulas may prove useful for determining few-cycle extreme ultraviolet (xuv) pulse characteristics, such as the CEP and the polarization.</description><identifier>ISSN: 1050-2947</identifier><identifier>EISSN: 1094-1622</identifier><identifier>DOI: 10.1103/PhysRevA.80.063403</identifier><language>eng</language><publisher>United States</publisher><subject>AMPLITUDES ; ANGULAR DISTRIBUTION ; ATOM COLLISIONS ; ATOMIC AND MOLECULAR PHYSICS ; ATOMS ; COLLISIONS ; DICHROISM ; DIFFERENTIAL EQUATIONS ; DISTRIBUTION ; ELECTROMAGNETIC RADIATION ; ELECTRONIC CIRCUITS ; ELECTRONS ; ELEMENTARY PARTICLES ; ELEMENTS ; ENERGY LEVELS ; EQUATIONS ; EXTREME ULTRAVIOLET RADIATION ; FERMIONS ; HYDROGEN ; IONIZATION ; LEPTONS ; MATHEMATICAL SOLUTIONS ; MATRIX ELEMENTS ; NONMETALS ; NUMERICAL SOLUTION ; P STATES ; PARTIAL DIFFERENTIAL EQUATIONS ; PERTURBATION THEORY ; PHOTOIONIZATION ; PHOTON COLLISIONS ; PHOTON-ATOM COLLISIONS ; POLARIZATION ; PULSE CIRCUITS ; PULSE SHAPERS ; PULSES ; RADIATIONS ; S STATES ; SCHROEDINGER EQUATION ; SIGNAL CONDITIONERS ; TRANSITION AMPLITUDES ; ULTRAVIOLET RADIATION ; WAVE EQUATIONS</subject><ispartof>Physical review. A, Atomic, molecular, and optical physics, 2009-12, Vol.80 (6), Article 063403</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-dc85ee4d13c29a4ca560dbb5efe60126b118d235eacde9f5c59709a0036f7ac73</citedby><cites>FETCH-LOGICAL-c368t-dc85ee4d13c29a4ca560dbb5efe60126b118d235eacde9f5c59709a0036f7ac73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21352370$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Pronin, E. A.</creatorcontrib><creatorcontrib>Starace, Anthony F.</creatorcontrib><creatorcontrib>Frolov, M. V.</creatorcontrib><creatorcontrib>Manakov, N. L.</creatorcontrib><title>Perturbation theory analysis of attosecond photoionization</title><title>Physical review. A, Atomic, molecular, and optical physics</title><description>Ionization of an atom by a few-cycle attosecond xuv pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. Within the PT approach, we present an ab initio parametrization of the ionized electron angular distribution (AD) using rotational invariance and symmetry arguments. This parametrization gives analytically the dependence of the AD on the carrier envelope phase (CEP), the polarization of the pulse, and on the ionized electron momentum direction, p. For the general case of an elliptically polarized pulse, we show that interference of the first- and second-order transition amplitudes causes a CEP-dependent asymmetry (with respect to p-&gt;-p) and both elliptic and circular dichroism effects. All of these effects are maximal in the polarization plane and depend not only on the CEP but also on the phase of dynamical atomic parameters that enter our parametrization of the AD. Within the single active electron model of an atom, for an initial s or p state we define all dynamical parameters in terms of radial matrix elements (analytic expressions for which are given for the Coulomb and zero-range potentials). For ionization of the H atom by linearly polarized pulses, our PT results are in excellent agreement with results of numerical solutions of the time-dependent Schroedinger equation of Peng et al.[New J. Phys. 10, 025030 (2008)]. Also, our numerical results show that the asymmetries and dichroism effects at low electron energies have a different physical origin from those at high electron energies. Moreover, our results for Gaussian and cosine-squared pulse shapes are in good qualitative agreement. Finally, we show that our analytic formulas may prove useful for determining few-cycle extreme ultraviolet (xuv) pulse characteristics, such as the CEP and the polarization.</description><subject>AMPLITUDES</subject><subject>ANGULAR DISTRIBUTION</subject><subject>ATOM COLLISIONS</subject><subject>ATOMIC AND MOLECULAR PHYSICS</subject><subject>ATOMS</subject><subject>COLLISIONS</subject><subject>DICHROISM</subject><subject>DIFFERENTIAL EQUATIONS</subject><subject>DISTRIBUTION</subject><subject>ELECTROMAGNETIC RADIATION</subject><subject>ELECTRONIC CIRCUITS</subject><subject>ELECTRONS</subject><subject>ELEMENTARY PARTICLES</subject><subject>ELEMENTS</subject><subject>ENERGY LEVELS</subject><subject>EQUATIONS</subject><subject>EXTREME ULTRAVIOLET RADIATION</subject><subject>FERMIONS</subject><subject>HYDROGEN</subject><subject>IONIZATION</subject><subject>LEPTONS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>MATRIX ELEMENTS</subject><subject>NONMETALS</subject><subject>NUMERICAL SOLUTION</subject><subject>P STATES</subject><subject>PARTIAL DIFFERENTIAL EQUATIONS</subject><subject>PERTURBATION THEORY</subject><subject>PHOTOIONIZATION</subject><subject>PHOTON COLLISIONS</subject><subject>PHOTON-ATOM COLLISIONS</subject><subject>POLARIZATION</subject><subject>PULSE CIRCUITS</subject><subject>PULSE SHAPERS</subject><subject>PULSES</subject><subject>RADIATIONS</subject><subject>S STATES</subject><subject>SCHROEDINGER EQUATION</subject><subject>SIGNAL CONDITIONERS</subject><subject>TRANSITION AMPLITUDES</subject><subject>ULTRAVIOLET RADIATION</subject><subject>WAVE EQUATIONS</subject><issn>1050-2947</issn><issn>1094-1622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LxDAURYMoOI7-AVcF160vn23cDYOOwoCD6Dqk6SutjM2QRKH-ejtW3-a-xeFyOYRcUygoBX6768b4gl-rooICFBfAT8iCghY5VYydHn8JOdOiPCcXMb7DdKLSC3K3w5A-Q21T74csdejDmNnB7sfYx8y3mU3JR3R-aLJD55OfsP77l74kZ63dR7z6yyV5e7h_XT_m2-fN03q1zR1XVcobV0lE0VDumLbCWamgqWuJLSqgTNWUVg3jEq1rULfSSV2CtgBctaV1JV-Sm7nXx9Sb6PqErpsGDeiSYZRLxkuYKDZTLvgYA7bmEPoPG0ZDwRwdmX9HpgIzO-I_PXtdKg</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Pronin, E. A.</creator><creator>Starace, Anthony F.</creator><creator>Frolov, M. V.</creator><creator>Manakov, N. L.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20091201</creationdate><title>Perturbation theory analysis of attosecond photoionization</title><author>Pronin, E. A. ; Starace, Anthony F. ; Frolov, M. V. ; Manakov, N. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-dc85ee4d13c29a4ca560dbb5efe60126b118d235eacde9f5c59709a0036f7ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>AMPLITUDES</topic><topic>ANGULAR DISTRIBUTION</topic><topic>ATOM COLLISIONS</topic><topic>ATOMIC AND MOLECULAR PHYSICS</topic><topic>ATOMS</topic><topic>COLLISIONS</topic><topic>DICHROISM</topic><topic>DIFFERENTIAL EQUATIONS</topic><topic>DISTRIBUTION</topic><topic>ELECTROMAGNETIC RADIATION</topic><topic>ELECTRONIC CIRCUITS</topic><topic>ELECTRONS</topic><topic>ELEMENTARY PARTICLES</topic><topic>ELEMENTS</topic><topic>ENERGY LEVELS</topic><topic>EQUATIONS</topic><topic>EXTREME ULTRAVIOLET RADIATION</topic><topic>FERMIONS</topic><topic>HYDROGEN</topic><topic>IONIZATION</topic><topic>LEPTONS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>MATRIX ELEMENTS</topic><topic>NONMETALS</topic><topic>NUMERICAL SOLUTION</topic><topic>P STATES</topic><topic>PARTIAL DIFFERENTIAL EQUATIONS</topic><topic>PERTURBATION THEORY</topic><topic>PHOTOIONIZATION</topic><topic>PHOTON COLLISIONS</topic><topic>PHOTON-ATOM COLLISIONS</topic><topic>POLARIZATION</topic><topic>PULSE CIRCUITS</topic><topic>PULSE SHAPERS</topic><topic>PULSES</topic><topic>RADIATIONS</topic><topic>S STATES</topic><topic>SCHROEDINGER EQUATION</topic><topic>SIGNAL CONDITIONERS</topic><topic>TRANSITION AMPLITUDES</topic><topic>ULTRAVIOLET RADIATION</topic><topic>WAVE EQUATIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Pronin, E. A.</creatorcontrib><creatorcontrib>Starace, Anthony F.</creatorcontrib><creatorcontrib>Frolov, M. V.</creatorcontrib><creatorcontrib>Manakov, N. L.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pronin, E. A.</au><au>Starace, Anthony F.</au><au>Frolov, M. V.</au><au>Manakov, N. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perturbation theory analysis of attosecond photoionization</atitle><jtitle>Physical review. A, Atomic, molecular, and optical physics</jtitle><date>2009-12-01</date><risdate>2009</risdate><volume>80</volume><issue>6</issue><artnum>063403</artnum><issn>1050-2947</issn><eissn>1094-1622</eissn><abstract>Ionization of an atom by a few-cycle attosecond xuv pulse is analyzed using perturbation theory (PT), keeping terms in the transition amplitude up to second order in the pulse electric field. Within the PT approach, we present an ab initio parametrization of the ionized electron angular distribution (AD) using rotational invariance and symmetry arguments. This parametrization gives analytically the dependence of the AD on the carrier envelope phase (CEP), the polarization of the pulse, and on the ionized electron momentum direction, p. For the general case of an elliptically polarized pulse, we show that interference of the first- and second-order transition amplitudes causes a CEP-dependent asymmetry (with respect to p-&gt;-p) and both elliptic and circular dichroism effects. All of these effects are maximal in the polarization plane and depend not only on the CEP but also on the phase of dynamical atomic parameters that enter our parametrization of the AD. Within the single active electron model of an atom, for an initial s or p state we define all dynamical parameters in terms of radial matrix elements (analytic expressions for which are given for the Coulomb and zero-range potentials). For ionization of the H atom by linearly polarized pulses, our PT results are in excellent agreement with results of numerical solutions of the time-dependent Schroedinger equation of Peng et al.[New J. Phys. 10, 025030 (2008)]. Also, our numerical results show that the asymmetries and dichroism effects at low electron energies have a different physical origin from those at high electron energies. Moreover, our results for Gaussian and cosine-squared pulse shapes are in good qualitative agreement. Finally, we show that our analytic formulas may prove useful for determining few-cycle extreme ultraviolet (xuv) pulse characteristics, such as the CEP and the polarization.</abstract><cop>United States</cop><doi>10.1103/PhysRevA.80.063403</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1050-2947
ispartof Physical review. A, Atomic, molecular, and optical physics, 2009-12, Vol.80 (6), Article 063403
issn 1050-2947
1094-1622
language eng
recordid cdi_osti_scitechconnect_21352370
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects AMPLITUDES
ANGULAR DISTRIBUTION
ATOM COLLISIONS
ATOMIC AND MOLECULAR PHYSICS
ATOMS
COLLISIONS
DICHROISM
DIFFERENTIAL EQUATIONS
DISTRIBUTION
ELECTROMAGNETIC RADIATION
ELECTRONIC CIRCUITS
ELECTRONS
ELEMENTARY PARTICLES
ELEMENTS
ENERGY LEVELS
EQUATIONS
EXTREME ULTRAVIOLET RADIATION
FERMIONS
HYDROGEN
IONIZATION
LEPTONS
MATHEMATICAL SOLUTIONS
MATRIX ELEMENTS
NONMETALS
NUMERICAL SOLUTION
P STATES
PARTIAL DIFFERENTIAL EQUATIONS
PERTURBATION THEORY
PHOTOIONIZATION
PHOTON COLLISIONS
PHOTON-ATOM COLLISIONS
POLARIZATION
PULSE CIRCUITS
PULSE SHAPERS
PULSES
RADIATIONS
S STATES
SCHROEDINGER EQUATION
SIGNAL CONDITIONERS
TRANSITION AMPLITUDES
ULTRAVIOLET RADIATION
WAVE EQUATIONS
title Perturbation theory analysis of attosecond photoionization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A50%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perturbation%20theory%20analysis%20of%20attosecond%20photoionization&rft.jtitle=Physical%20review.%20A,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Pronin,%20E.%20A.&rft.date=2009-12-01&rft.volume=80&rft.issue=6&rft.artnum=063403&rft.issn=1050-2947&rft.eissn=1094-1622&rft_id=info:doi/10.1103/PhysRevA.80.063403&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevA_80_063403%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-dc85ee4d13c29a4ca560dbb5efe60126b118d235eacde9f5c59709a0036f7ac73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true