Loading…

Characterization and limits of a cold-atom Sagnac interferometer

We present the full evaluation of a cold-atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal, allowing us to r...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2009-12, Vol.80 (6), Article 063604
Main Authors: Gauguet, A., Canuel, B., Lévèque, T., Chaibi, W., Landragin, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the full evaluation of a cold-atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal, allowing us to reach the fundamental limit of the quantum projection noise for short term measurements. The technical limits to the long term sensitivity and accuracy have been identified, clearing the way for the next generation of ultrasensitive atom gyroscopes.
ISSN:1050-2947
1094-1622
DOI:10.1103/PhysRevA.80.063604