Loading…
Adjustable microchip ring trap for cold atoms and molecules
We describe the design and function of a circular magnetic waveguide produced from wires on a microchip for atom interferometry using de Broglie waves. The guide is a two-dimensional magnetic minimum for trapping weak-field seeking states of atoms or molecules with a magnetic dipole moment. The desi...
Saved in:
Published in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2009-12, Vol.80 (6), Article 063615 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe the design and function of a circular magnetic waveguide produced from wires on a microchip for atom interferometry using de Broglie waves. The guide is a two-dimensional magnetic minimum for trapping weak-field seeking states of atoms or molecules with a magnetic dipole moment. The design consists of seven circular wires sharing a common radius. We describe the design, the time-dependent currents of the wires and show that it is possible to form a circular waveguide with adjustable height and gradient while minimizing perturbation resulting from leads or wire crossings. This maximal area geometry is suited for rotation sensing with atom interferometry via the Sagnac effect using either cold atoms, molecules and Bose-condensed systems. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.80.063615 |