Loading…

Macroscopic thermoplastic model applied to the high pressure torsion of metallic glasses

Shear deformation generated temperature rise in metallic glasses is estimated in a macroscopic three-dimensional axial symmetric thermoplastic model. Numerical solution of heat-conduction equation provides the time evolution and spatial distribution of temperature for high pressure torsion in the pr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2009-07, Vol.106 (2), p.023531-023531-6
Main Authors: Hobor, Sandor, Revesz, Adam, Kovacs, Zsolt, School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-153993fb41dd23ba22007aa5bd74bcb965a041d45c2809730f96fb28f1843e3e3
cites cdi_FETCH-LOGICAL-c378t-153993fb41dd23ba22007aa5bd74bcb965a041d45c2809730f96fb28f1843e3e3
container_end_page 023531-6
container_issue 2
container_start_page 023531
container_title Journal of applied physics
container_volume 106
creator Hobor, Sandor
Revesz, Adam
Kovacs, Zsolt
School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4
description Shear deformation generated temperature rise in metallic glasses is estimated in a macroscopic three-dimensional axial symmetric thermoplastic model. Numerical solution of heat-conduction equation provides the time evolution and spatial distribution of temperature for high pressure torsion in the present paper. We have shown that small sample thickness and/or high deformation rate enables the temperature to exceed the glass transition in the entire sample, yielding a transition of the deformation mode from inhomogeneous to homogeneous viscous flow. However, in other cases only a small temperature increase is predicted in line with literature data.
doi_str_mv 10.1063/1.3176950
format article
fullrecord <record><control><sourceid>scitation_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21359323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>jap</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-153993fb41dd23ba22007aa5bd74bcb965a041d45c2809730f96fb28f1843e3e3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK4e_AcBTx66TpKmaS6CLH7BihcFbyFNk22l3ZQkHvz3puwKXmQOw8w88zLzInRJYEWgYjdkxYioJIcjtCBQy0JwDsdoAUBJUUshT9FZjJ8AhNRMLtDHizbBR-On3uDU2TD6adAx5Wr0rR2wnqahty1Ofh7jrt92eAo2xq9gczPE3u-wd3i0SQ9DXtvm9WjjOTpxeoj24pCX6P3h_m39VGxeH5_Xd5vCMFGngnAmJXNNSdqWskZTCiC05k0rysY0suIa8qzkhtYgBQMnK9fQ2pG6ZDbHEl3tdX0-WkXTJ2s643c7a5KihHHJKMvU9Z6an43BOjWFftThWxFQs3GKqINxmb3ds7OYTvm__-E_7qlf99gP7kZ15Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Macroscopic thermoplastic model applied to the high pressure torsion of metallic glasses</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Hobor, Sandor ; Revesz, Adam ; Kovacs, Zsolt ; School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4</creator><creatorcontrib>Hobor, Sandor ; Revesz, Adam ; Kovacs, Zsolt ; School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4</creatorcontrib><description>Shear deformation generated temperature rise in metallic glasses is estimated in a macroscopic three-dimensional axial symmetric thermoplastic model. Numerical solution of heat-conduction equation provides the time evolution and spatial distribution of temperature for high pressure torsion in the present paper. We have shown that small sample thickness and/or high deformation rate enables the temperature to exceed the glass transition in the entire sample, yielding a transition of the deformation mode from inhomogeneous to homogeneous viscous flow. However, in other cases only a small temperature increase is predicted in line with literature data.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.3176950</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>DIMENSIONS ; DISTRIBUTION ; ENERGY TRANSFER ; ENTHALPY ; EQUATIONS ; EVOLUTION ; FLUID FLOW ; GLASS ; HEAT TRANSFER ; MATERIALS ; MATERIALS SCIENCE ; MATHEMATICAL SOLUTIONS ; MECHANICAL PROPERTIES ; METALLIC GLASSES ; NUMERICAL SOLUTION ; ORGANIC COMPOUNDS ; ORGANIC POLYMERS ; PETROCHEMICALS ; PETROLEUM PRODUCTS ; PHYSICAL PROPERTIES ; PLASTICITY ; PLASTICS ; POLYMERS ; SPATIAL DISTRIBUTION ; SYMMETRY ; SYNTHETIC MATERIALS ; THERMAL CONDUCTION ; THERMODYNAMIC PROPERTIES ; THERMOPLASTICS ; THICKNESS ; THREE-DIMENSIONAL CALCULATIONS ; TORSION ; TRANSITION HEAT ; VISCOUS FLOW</subject><ispartof>Journal of applied physics, 2009-07, Vol.106 (2), p.023531-023531-6</ispartof><rights>2009 American Institute of Physics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-153993fb41dd23ba22007aa5bd74bcb965a041d45c2809730f96fb28f1843e3e3</citedby><cites>FETCH-LOGICAL-c378t-153993fb41dd23ba22007aa5bd74bcb965a041d45c2809730f96fb28f1843e3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27922,27923</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21359323$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hobor, Sandor</creatorcontrib><creatorcontrib>Revesz, Adam</creatorcontrib><creatorcontrib>Kovacs, Zsolt</creatorcontrib><creatorcontrib>School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4</creatorcontrib><title>Macroscopic thermoplastic model applied to the high pressure torsion of metallic glasses</title><title>Journal of applied physics</title><description>Shear deformation generated temperature rise in metallic glasses is estimated in a macroscopic three-dimensional axial symmetric thermoplastic model. Numerical solution of heat-conduction equation provides the time evolution and spatial distribution of temperature for high pressure torsion in the present paper. We have shown that small sample thickness and/or high deformation rate enables the temperature to exceed the glass transition in the entire sample, yielding a transition of the deformation mode from inhomogeneous to homogeneous viscous flow. However, in other cases only a small temperature increase is predicted in line with literature data.</description><subject>DIMENSIONS</subject><subject>DISTRIBUTION</subject><subject>ENERGY TRANSFER</subject><subject>ENTHALPY</subject><subject>EQUATIONS</subject><subject>EVOLUTION</subject><subject>FLUID FLOW</subject><subject>GLASS</subject><subject>HEAT TRANSFER</subject><subject>MATERIALS</subject><subject>MATERIALS SCIENCE</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>MECHANICAL PROPERTIES</subject><subject>METALLIC GLASSES</subject><subject>NUMERICAL SOLUTION</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC POLYMERS</subject><subject>PETROCHEMICALS</subject><subject>PETROLEUM PRODUCTS</subject><subject>PHYSICAL PROPERTIES</subject><subject>PLASTICITY</subject><subject>PLASTICS</subject><subject>POLYMERS</subject><subject>SPATIAL DISTRIBUTION</subject><subject>SYMMETRY</subject><subject>SYNTHETIC MATERIALS</subject><subject>THERMAL CONDUCTION</subject><subject>THERMODYNAMIC PROPERTIES</subject><subject>THERMOPLASTICS</subject><subject>THICKNESS</subject><subject>THREE-DIMENSIONAL CALCULATIONS</subject><subject>TORSION</subject><subject>TRANSITION HEAT</subject><subject>VISCOUS FLOW</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK4e_AcBTx66TpKmaS6CLH7BihcFbyFNk22l3ZQkHvz3puwKXmQOw8w88zLzInRJYEWgYjdkxYioJIcjtCBQy0JwDsdoAUBJUUshT9FZjJ8AhNRMLtDHizbBR-On3uDU2TD6adAx5Wr0rR2wnqahty1Ofh7jrt92eAo2xq9gczPE3u-wd3i0SQ9DXtvm9WjjOTpxeoj24pCX6P3h_m39VGxeH5_Xd5vCMFGngnAmJXNNSdqWskZTCiC05k0rysY0suIa8qzkhtYgBQMnK9fQ2pG6ZDbHEl3tdX0-WkXTJ2s643c7a5KihHHJKMvU9Z6an43BOjWFftThWxFQs3GKqINxmb3ds7OYTvm__-E_7qlf99gP7kZ15Q</recordid><startdate>20090715</startdate><enddate>20090715</enddate><creator>Hobor, Sandor</creator><creator>Revesz, Adam</creator><creator>Kovacs, Zsolt</creator><creator>School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20090715</creationdate><title>Macroscopic thermoplastic model applied to the high pressure torsion of metallic glasses</title><author>Hobor, Sandor ; Revesz, Adam ; Kovacs, Zsolt ; School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-153993fb41dd23ba22007aa5bd74bcb965a041d45c2809730f96fb28f1843e3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>DIMENSIONS</topic><topic>DISTRIBUTION</topic><topic>ENERGY TRANSFER</topic><topic>ENTHALPY</topic><topic>EQUATIONS</topic><topic>EVOLUTION</topic><topic>FLUID FLOW</topic><topic>GLASS</topic><topic>HEAT TRANSFER</topic><topic>MATERIALS</topic><topic>MATERIALS SCIENCE</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>MECHANICAL PROPERTIES</topic><topic>METALLIC GLASSES</topic><topic>NUMERICAL SOLUTION</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC POLYMERS</topic><topic>PETROCHEMICALS</topic><topic>PETROLEUM PRODUCTS</topic><topic>PHYSICAL PROPERTIES</topic><topic>PLASTICITY</topic><topic>PLASTICS</topic><topic>POLYMERS</topic><topic>SPATIAL DISTRIBUTION</topic><topic>SYMMETRY</topic><topic>SYNTHETIC MATERIALS</topic><topic>THERMAL CONDUCTION</topic><topic>THERMODYNAMIC PROPERTIES</topic><topic>THERMOPLASTICS</topic><topic>THICKNESS</topic><topic>THREE-DIMENSIONAL CALCULATIONS</topic><topic>TORSION</topic><topic>TRANSITION HEAT</topic><topic>VISCOUS FLOW</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hobor, Sandor</creatorcontrib><creatorcontrib>Revesz, Adam</creatorcontrib><creatorcontrib>Kovacs, Zsolt</creatorcontrib><creatorcontrib>School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hobor, Sandor</au><au>Revesz, Adam</au><au>Kovacs, Zsolt</au><au>School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macroscopic thermoplastic model applied to the high pressure torsion of metallic glasses</atitle><jtitle>Journal of applied physics</jtitle><date>2009-07-15</date><risdate>2009</risdate><volume>106</volume><issue>2</issue><spage>023531</spage><epage>023531-6</epage><pages>023531-023531-6</pages><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Shear deformation generated temperature rise in metallic glasses is estimated in a macroscopic three-dimensional axial symmetric thermoplastic model. Numerical solution of heat-conduction equation provides the time evolution and spatial distribution of temperature for high pressure torsion in the present paper. We have shown that small sample thickness and/or high deformation rate enables the temperature to exceed the glass transition in the entire sample, yielding a transition of the deformation mode from inhomogeneous to homogeneous viscous flow. However, in other cases only a small temperature increase is predicted in line with literature data.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><doi>10.1063/1.3176950</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2009-07, Vol.106 (2), p.023531-023531-6
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_21359323
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects DIMENSIONS
DISTRIBUTION
ENERGY TRANSFER
ENTHALPY
EQUATIONS
EVOLUTION
FLUID FLOW
GLASS
HEAT TRANSFER
MATERIALS
MATERIALS SCIENCE
MATHEMATICAL SOLUTIONS
MECHANICAL PROPERTIES
METALLIC GLASSES
NUMERICAL SOLUTION
ORGANIC COMPOUNDS
ORGANIC POLYMERS
PETROCHEMICALS
PETROLEUM PRODUCTS
PHYSICAL PROPERTIES
PLASTICITY
PLASTICS
POLYMERS
SPATIAL DISTRIBUTION
SYMMETRY
SYNTHETIC MATERIALS
THERMAL CONDUCTION
THERMODYNAMIC PROPERTIES
THERMOPLASTICS
THICKNESS
THREE-DIMENSIONAL CALCULATIONS
TORSION
TRANSITION HEAT
VISCOUS FLOW
title Macroscopic thermoplastic model applied to the high pressure torsion of metallic glasses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macroscopic%20thermoplastic%20model%20applied%20to%20the%20high%20pressure%20torsion%20of%20metallic%20glasses&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Hobor,%20Sandor&rft.date=2009-07-15&rft.volume=106&rft.issue=2&rft.spage=023531&rft.epage=023531-6&rft.pages=023531-023531-6&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/1.3176950&rft_dat=%3Cscitation_osti_%3Ejap%3C/scitation_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-153993fb41dd23ba22007aa5bd74bcb965a041d45c2809730f96fb28f1843e3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true