Loading…
Symmetry tuning via controlled crossed-beam energy transfer on the National Ignition Facility
The Hohlraum energetics experimental campaign started in the summer of 2009 on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. These experiments showed good coupling of the laser energy into the targets [N. Meezan et al., Phys. Plasmas 17, 056304 (2010)]....
Saved in:
Published in: | Physics of plasmas 2010-05, Vol.17 (5) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Hohlraum energetics experimental campaign started in the summer of 2009 on the National Ignition Facility (NIF) [E. I. Moses et al., Phys. Plasmas 16, 041006 (2009)]. These experiments showed good coupling of the laser energy into the targets [N. Meezan et al., Phys. Plasmas 17, 056304 (2010)]. They have also demonstrated controlled crossed-beam energy transfer between laser beams as an efficient and robust tool to tune the implosion symmetry of ignition capsules, as predicted by earlier calculations [P. Michel et al., Phys. Rev. Lett. 102, 025004 (2009)]. A new linear model calculating crossed-beam energy transfer between cones of beams on the NIF has been developed. The model has been applied to the subscale Hohlraum targets shot during the National Ignition Campaign in 2009. A good agreement can be found between the calculations and the experiments when the impaired propagation of the laser beams due to backscatter is accounted for. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.3325733 |