Loading…
Convective Motions and Net Circular Polarization in Sunspot Penumbrae
We have employed a penumbral model, which includes the Evershed flow and convective motions inside penumbral filaments, to reproduce the azimuthal variation of the net circular polarization (NCP) in sunspot penumbrae at different heliocentric angles for two different spectral lines. The theoretical...
Saved in:
Published in: | The Astrophysical journal 2010-01, Vol.709 (1), p.349-357 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have employed a penumbral model, which includes the Evershed flow and convective motions inside penumbral filaments, to reproduce the azimuthal variation of the net circular polarization (NCP) in sunspot penumbrae at different heliocentric angles for two different spectral lines. The theoretical NCP fits the observations as satisfactorily as penumbral models based on flux tubes. The reason for this is that the effect of convective motions on the NCP is very small compared to the effect of the Evershed flow. In addition, the NCP generated by convective upflows cancels out the NCP generated by the downflows. We have also found that, in order to fit the observed NCP, the strength of the magnetic field inside penumbral filaments must be very close to 1000 G. In particular, field-free or weak-field filaments fail to reproduce both the correct sign of the NCP and its dependence on the azimuthal and heliocentric angles. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/709/1/349 |