Loading…

Asymmetric dark matter and the sun

Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure fo...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2010-07, Vol.105 (1), p.011301-011301, Article 011301
Main Authors: Frandsen, Mads T, Sarkar, Subir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cold dark matter particles with an intrinsic matter-antimatter asymmetry do not annihilate after gravitational capture by the Sun and can affect its interior structure. The rate of capture is exponentially enhanced when such particles have self-interactions of the right order to explain structure formation on galactic scales. A "dark baryon" of mass 5 GeV is a natural candidate and has the required relic abundance if its asymmetry is similar to that of ordinary baryons. We show that such particles can solve the "solar composition problem." The predicted small decrease in the low energy neutrino fluxes may be measurable by the Borexino and SNO+ experiments.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.105.011301