Loading…

The ideal relativistic rotating gas as a perfect fluid with spin

We show that the ideal relativistic spinning gas at complete thermodynamical equilibrium is a fluid with a non-vanishing spin density tensor σ μν . After having obtained the expression of the local spin-dependent phase-space density f( x, p) στ in the Boltzmann approximation, we derive the spin dens...

Full description

Saved in:
Bibliographic Details
Published in:Annals of physics 2010-08, Vol.325 (8), p.1566-1594
Main Authors: Becattini, F., Tinti, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-bc86d86690fe7a2709767152f2f561de1133a9011f800a4fc197112aee3c95933
cites cdi_FETCH-LOGICAL-c395t-bc86d86690fe7a2709767152f2f561de1133a9011f800a4fc197112aee3c95933
container_end_page 1594
container_issue 8
container_start_page 1566
container_title Annals of physics
container_volume 325
creator Becattini, F.
Tinti, L.
description We show that the ideal relativistic spinning gas at complete thermodynamical equilibrium is a fluid with a non-vanishing spin density tensor σ μν . After having obtained the expression of the local spin-dependent phase-space density f( x, p) στ in the Boltzmann approximation, we derive the spin density tensor and show that it is proportional to the acceleration tensor Ω μν constructed with the Frenet–Serret tetrad. We recover the proper generalization of the fundamental thermodynamical relation, involving an additional term −(1/2)Ω μν σ μν . We also show that the spin density tensor has a non-vanishing projection onto the four-velocity field, i.e. t μ = σ μν u ν ≠ 0, in contrast to the common assumption t μ = 0, known as Frenkel condition, in the thus-far proposed theories of relativistic fluids with spin. We briefly address the viewpoint of the accelerated observer and inertial spin effects.
doi_str_mv 10.1016/j.aop.2010.03.007
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21457141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000349161000059X</els_id><sourcerecordid>2092644731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-bc86d86690fe7a2709767152f2f561de1133a9011f800a4fc197112aee3c95933</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH78Ad6CnrvONJumwYsifsGClxW8hZhO3CxrW5Ou4n9vSj0LA8PAe8PvPcbOEOYIWF1u5rbr5yXkG8QcQO2xGYKuChDydZ_NAEAUC43VITtKaQOAuJD1jF2v1sRDQ3bLI23tEL5CGoLjsRvy0b7zd5v4OLyn6MkN3G93oeHfYVjz1If2hB14u010-reP2cv93er2sVg-Pzzd3iwLJ7QcijdXV01dVRo8KVsq0KpSKEtfellhQ4hCWJ2pfA1gF96hVoilJRJOSy3EMbuY_naZzyQXBnJr17VtZjJlDqNwgVl1Pqn62H3uKA1m0-1im8GMKgXWUkmZRTiJXOxSiuRNH8OHjT8GwYxtmo3JbZqxTQPC5Daz52ryUM74FSiOCNQ6akIcCZou_OP-Baqhelg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>723185755</pqid></control><display><type>article</type><title>The ideal relativistic rotating gas as a perfect fluid with spin</title><source>Elsevier</source><creator>Becattini, F. ; Tinti, L.</creator><creatorcontrib>Becattini, F. ; Tinti, L.</creatorcontrib><description>We show that the ideal relativistic spinning gas at complete thermodynamical equilibrium is a fluid with a non-vanishing spin density tensor σ μν . After having obtained the expression of the local spin-dependent phase-space density f( x, p) στ in the Boltzmann approximation, we derive the spin density tensor and show that it is proportional to the acceleration tensor Ω μν constructed with the Frenet–Serret tetrad. We recover the proper generalization of the fundamental thermodynamical relation, involving an additional term −(1/2)Ω μν σ μν . We also show that the spin density tensor has a non-vanishing projection onto the four-velocity field, i.e. t μ = σ μν u ν ≠ 0, in contrast to the common assumption t μ = 0, known as Frenkel condition, in the thus-far proposed theories of relativistic fluids with spin. We briefly address the viewpoint of the accelerated observer and inertial spin effects.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2010.03.007</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>ACCELERATION ; ANGULAR MOMENTUM ; BOLTZMANN STATISTICS ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; DENSITY ; ENERGY RANGE ; EQUILIBRIUM ; Fluid dynamics ; FLUID FLOW ; FLUIDS ; Gases ; IDEAL FLOW ; INCOMPRESSIBLE FLOW ; MATHEMATICAL SPACE ; PARTICLE PROPERTIES ; PHASE SPACE ; PHYSICAL PROPERTIES ; Relativistic fluids with spin ; RELATIVISTIC RANGE ; Relativistic thermodynamics ; Rotating relativistic gas ; SPACE ; SPIN ; STEADY FLOW ; TENSORS ; Theory ; THERMODYNAMICS ; VELOCITY</subject><ispartof>Annals of physics, 2010-08, Vol.325 (8), p.1566-1594</ispartof><rights>2010 Elsevier Inc.</rights><rights>Copyright © 2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-bc86d86690fe7a2709767152f2f561de1133a9011f800a4fc197112aee3c95933</citedby><cites>FETCH-LOGICAL-c395t-bc86d86690fe7a2709767152f2f561de1133a9011f800a4fc197112aee3c95933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21457141$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Becattini, F.</creatorcontrib><creatorcontrib>Tinti, L.</creatorcontrib><title>The ideal relativistic rotating gas as a perfect fluid with spin</title><title>Annals of physics</title><description>We show that the ideal relativistic spinning gas at complete thermodynamical equilibrium is a fluid with a non-vanishing spin density tensor σ μν . After having obtained the expression of the local spin-dependent phase-space density f( x, p) στ in the Boltzmann approximation, we derive the spin density tensor and show that it is proportional to the acceleration tensor Ω μν constructed with the Frenet–Serret tetrad. We recover the proper generalization of the fundamental thermodynamical relation, involving an additional term −(1/2)Ω μν σ μν . We also show that the spin density tensor has a non-vanishing projection onto the four-velocity field, i.e. t μ = σ μν u ν ≠ 0, in contrast to the common assumption t μ = 0, known as Frenkel condition, in the thus-far proposed theories of relativistic fluids with spin. We briefly address the viewpoint of the accelerated observer and inertial spin effects.</description><subject>ACCELERATION</subject><subject>ANGULAR MOMENTUM</subject><subject>BOLTZMANN STATISTICS</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>DENSITY</subject><subject>ENERGY RANGE</subject><subject>EQUILIBRIUM</subject><subject>Fluid dynamics</subject><subject>FLUID FLOW</subject><subject>FLUIDS</subject><subject>Gases</subject><subject>IDEAL FLOW</subject><subject>INCOMPRESSIBLE FLOW</subject><subject>MATHEMATICAL SPACE</subject><subject>PARTICLE PROPERTIES</subject><subject>PHASE SPACE</subject><subject>PHYSICAL PROPERTIES</subject><subject>Relativistic fluids with spin</subject><subject>RELATIVISTIC RANGE</subject><subject>Relativistic thermodynamics</subject><subject>Rotating relativistic gas</subject><subject>SPACE</subject><subject>SPIN</subject><subject>STEADY FLOW</subject><subject>TENSORS</subject><subject>Theory</subject><subject>THERMODYNAMICS</subject><subject>VELOCITY</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH78Ad6CnrvONJumwYsifsGClxW8hZhO3CxrW5Ou4n9vSj0LA8PAe8PvPcbOEOYIWF1u5rbr5yXkG8QcQO2xGYKuChDydZ_NAEAUC43VITtKaQOAuJD1jF2v1sRDQ3bLI23tEL5CGoLjsRvy0b7zd5v4OLyn6MkN3G93oeHfYVjz1If2hB14u010-reP2cv93er2sVg-Pzzd3iwLJ7QcijdXV01dVRo8KVsq0KpSKEtfellhQ4hCWJ2pfA1gF96hVoilJRJOSy3EMbuY_naZzyQXBnJr17VtZjJlDqNwgVl1Pqn62H3uKA1m0-1im8GMKgXWUkmZRTiJXOxSiuRNH8OHjT8GwYxtmo3JbZqxTQPC5Daz52ryUM74FSiOCNQ6akIcCZou_OP-Baqhelg</recordid><startdate>20100801</startdate><enddate>20100801</enddate><creator>Becattini, F.</creator><creator>Tinti, L.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20100801</creationdate><title>The ideal relativistic rotating gas as a perfect fluid with spin</title><author>Becattini, F. ; Tinti, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-bc86d86690fe7a2709767152f2f561de1133a9011f800a4fc197112aee3c95933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>ACCELERATION</topic><topic>ANGULAR MOMENTUM</topic><topic>BOLTZMANN STATISTICS</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>DENSITY</topic><topic>ENERGY RANGE</topic><topic>EQUILIBRIUM</topic><topic>Fluid dynamics</topic><topic>FLUID FLOW</topic><topic>FLUIDS</topic><topic>Gases</topic><topic>IDEAL FLOW</topic><topic>INCOMPRESSIBLE FLOW</topic><topic>MATHEMATICAL SPACE</topic><topic>PARTICLE PROPERTIES</topic><topic>PHASE SPACE</topic><topic>PHYSICAL PROPERTIES</topic><topic>Relativistic fluids with spin</topic><topic>RELATIVISTIC RANGE</topic><topic>Relativistic thermodynamics</topic><topic>Rotating relativistic gas</topic><topic>SPACE</topic><topic>SPIN</topic><topic>STEADY FLOW</topic><topic>TENSORS</topic><topic>Theory</topic><topic>THERMODYNAMICS</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becattini, F.</creatorcontrib><creatorcontrib>Tinti, L.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becattini, F.</au><au>Tinti, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The ideal relativistic rotating gas as a perfect fluid with spin</atitle><jtitle>Annals of physics</jtitle><date>2010-08-01</date><risdate>2010</risdate><volume>325</volume><issue>8</issue><spage>1566</spage><epage>1594</epage><pages>1566-1594</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>We show that the ideal relativistic spinning gas at complete thermodynamical equilibrium is a fluid with a non-vanishing spin density tensor σ μν . After having obtained the expression of the local spin-dependent phase-space density f( x, p) στ in the Boltzmann approximation, we derive the spin density tensor and show that it is proportional to the acceleration tensor Ω μν constructed with the Frenet–Serret tetrad. We recover the proper generalization of the fundamental thermodynamical relation, involving an additional term −(1/2)Ω μν σ μν . We also show that the spin density tensor has a non-vanishing projection onto the four-velocity field, i.e. t μ = σ μν u ν ≠ 0, in contrast to the common assumption t μ = 0, known as Frenkel condition, in the thus-far proposed theories of relativistic fluids with spin. We briefly address the viewpoint of the accelerated observer and inertial spin effects.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2010.03.007</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2010-08, Vol.325 (8), p.1566-1594
issn 0003-4916
1096-035X
language eng
recordid cdi_osti_scitechconnect_21457141
source Elsevier
subjects ACCELERATION
ANGULAR MOMENTUM
BOLTZMANN STATISTICS
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
DENSITY
ENERGY RANGE
EQUILIBRIUM
Fluid dynamics
FLUID FLOW
FLUIDS
Gases
IDEAL FLOW
INCOMPRESSIBLE FLOW
MATHEMATICAL SPACE
PARTICLE PROPERTIES
PHASE SPACE
PHYSICAL PROPERTIES
Relativistic fluids with spin
RELATIVISTIC RANGE
Relativistic thermodynamics
Rotating relativistic gas
SPACE
SPIN
STEADY FLOW
TENSORS
Theory
THERMODYNAMICS
VELOCITY
title The ideal relativistic rotating gas as a perfect fluid with spin
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T17%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20ideal%20relativistic%20rotating%20gas%20as%20a%20perfect%20fluid%20with%20spin&rft.jtitle=Annals%20of%20physics&rft.au=Becattini,%20F.&rft.date=2010-08-01&rft.volume=325&rft.issue=8&rft.spage=1566&rft.epage=1594&rft.pages=1566-1594&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2010.03.007&rft_dat=%3Cproquest_osti_%3E2092644731%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-bc86d86690fe7a2709767152f2f561de1133a9011f800a4fc197112aee3c95933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=723185755&rft_id=info:pmid/&rfr_iscdi=true