Loading…
"Snowflake" H mode in a tokamak plasma
An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a "snowflake" (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increa...
Saved in:
Published in: | Physical review letters 2010-10, Vol.105 (15), p.155003-155003, Article 155003 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An edge-localized mode (ELM) H-mode regime, supported by electron cyclotron heating, has been successfully established in a "snowflake" (second-order null) divertor configuration for the first time in the TCV tokamak. This regime exhibits 2 to 3 times lower ELM frequency and 20%-30% increased normalized ELM energy (ΔWELM/Wp) compared to an identically shaped, conventional single-null diverted H mode. Enhanced stability of mid- to high-toroidal-mode-number ideal modes is consistent with the different snowflake ELM phenomenology. The capability of the snowflake to redistribute the edge power on the additional strike points has been confirmed experimentally. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.105.155003 |