Loading…

Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential

Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation. Solutions are obtained for separable potentials consisting of a Davidson potential in the...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. C, Nuclear physics Nuclear physics, 2011-04, Vol.83 (4), Article 044321
Main Authors: Bonatsos, Dennis, Georgoudis, P. E., Lenis, D., Minkov, N., Quesne, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c275t-c35ec6d9dee30ef2e49fd81adddf8b03d0bd58ad58b1cc3646613a0abcb302a33
cites cdi_FETCH-LOGICAL-c275t-c35ec6d9dee30ef2e49fd81adddf8b03d0bd58ad58b1cc3646613a0abcb302a33
container_end_page
container_issue 4
container_start_page
container_title Physical review. C, Nuclear physics
container_volume 83
creator Bonatsos, Dennis
Georgoudis, P. E.
Lenis, D.
Minkov, N.
Quesne, C.
description Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation. Solutions are obtained for separable potentials consisting of a Davidson potential in the {beta} variable, in the cases of {gamma}-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. The solution, called the deformation-dependent mass (DDM) Davidson model, is achieved by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, reduces the rate of increase of the moment of inertia with deformation, removing a main drawback of the model.
doi_str_mv 10.1103/PhysRevC.83.044321
format article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_21499572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevC_83_044321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c275t-c35ec6d9dee30ef2e49fd81adddf8b03d0bd58ad58b1cc3646613a0abcb302a33</originalsourceid><addsrcrecordid>eNo1kE1LAzEURYMoWKt_wFXA9dQkb2aaWWr9qFBQioK7kEneMJGZpCSh0n_vSPXB5S3u4S4OIdecLThncPvWH9IW96uFhAUrSxD8hMw4k01RNuzzlMxYVdWFkBzOyUVKX2w6gHpGtvehj3StRzfk4J329NvlnmpqsQtx1NkFX1jcobfoMx11SjRjHOnU0twjfdB7Z1PwdBfyRDg9XJKzTg8Jr_7-nHw8Pb6v1sXm9flldbcpjFhWuTBQoaltYxGBYSewbDorubbWdrJlYFlrK6mntNwYqMu65qCZbk0LTGiAObk57oaUnUrGZTS9Cd6jyUrwsmmqpZgocaRMDClF7NQuulHHg-JM_bpT_-6UBHV0Bz9ih2Xq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Bonatsos, Dennis ; Georgoudis, P. E. ; Lenis, D. ; Minkov, N. ; Quesne, C.</creator><creatorcontrib>Bonatsos, Dennis ; Georgoudis, P. E. ; Lenis, D. ; Minkov, N. ; Quesne, C.</creatorcontrib><description>Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation. Solutions are obtained for separable potentials consisting of a Davidson potential in the {beta} variable, in the cases of {gamma}-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. The solution, called the deformation-dependent mass (DDM) Davidson model, is achieved by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, reduces the rate of increase of the moment of inertia with deformation, removing a main drawback of the model.</description><identifier>ISSN: 0556-2813</identifier><identifier>EISSN: 1089-490X</identifier><identifier>DOI: 10.1103/PhysRevC.83.044321</identifier><language>eng</language><publisher>United States</publisher><subject>APPROXIMATIONS ; AXIAL SYMMETRY ; CALCULATION METHODS ; DEFORMATION ; DEFORMED NUCLEI ; E2-TRANSITIONS ; ENERGY-LEVEL TRANSITIONS ; FUNCTIONS ; HAMILTONIANS ; MASS ; MATHEMATICAL OPERATORS ; MATHEMATICAL SOLUTIONS ; MECHANICS ; MOMENT OF INERTIA ; MULTIPOLE TRANSITIONS ; NUCLEAR DEFORMATION ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; NUCLEI ; QUANTUM MECHANICS ; QUANTUM OPERATORS ; SPECTRA ; SUPERSYMMETRY ; SYMMETRY ; WAVE FUNCTIONS</subject><ispartof>Physical review. C, Nuclear physics, 2011-04, Vol.83 (4), Article 044321</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c275t-c35ec6d9dee30ef2e49fd81adddf8b03d0bd58ad58b1cc3646613a0abcb302a33</citedby><cites>FETCH-LOGICAL-c275t-c35ec6d9dee30ef2e49fd81adddf8b03d0bd58ad58b1cc3646613a0abcb302a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/21499572$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bonatsos, Dennis</creatorcontrib><creatorcontrib>Georgoudis, P. E.</creatorcontrib><creatorcontrib>Lenis, D.</creatorcontrib><creatorcontrib>Minkov, N.</creatorcontrib><creatorcontrib>Quesne, C.</creatorcontrib><title>Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential</title><title>Physical review. C, Nuclear physics</title><description>Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation. Solutions are obtained for separable potentials consisting of a Davidson potential in the {beta} variable, in the cases of {gamma}-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. The solution, called the deformation-dependent mass (DDM) Davidson model, is achieved by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, reduces the rate of increase of the moment of inertia with deformation, removing a main drawback of the model.</description><subject>APPROXIMATIONS</subject><subject>AXIAL SYMMETRY</subject><subject>CALCULATION METHODS</subject><subject>DEFORMATION</subject><subject>DEFORMED NUCLEI</subject><subject>E2-TRANSITIONS</subject><subject>ENERGY-LEVEL TRANSITIONS</subject><subject>FUNCTIONS</subject><subject>HAMILTONIANS</subject><subject>MASS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>MECHANICS</subject><subject>MOMENT OF INERTIA</subject><subject>MULTIPOLE TRANSITIONS</subject><subject>NUCLEAR DEFORMATION</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>NUCLEI</subject><subject>QUANTUM MECHANICS</subject><subject>QUANTUM OPERATORS</subject><subject>SPECTRA</subject><subject>SUPERSYMMETRY</subject><subject>SYMMETRY</subject><subject>WAVE FUNCTIONS</subject><issn>0556-2813</issn><issn>1089-490X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LAzEURYMoWKt_wFXA9dQkb2aaWWr9qFBQioK7kEneMJGZpCSh0n_vSPXB5S3u4S4OIdecLThncPvWH9IW96uFhAUrSxD8hMw4k01RNuzzlMxYVdWFkBzOyUVKX2w6gHpGtvehj3StRzfk4J329NvlnmpqsQtx1NkFX1jcobfoMx11SjRjHOnU0twjfdB7Z1PwdBfyRDg9XJKzTg8Jr_7-nHw8Pb6v1sXm9flldbcpjFhWuTBQoaltYxGBYSewbDorubbWdrJlYFlrK6mntNwYqMu65qCZbk0LTGiAObk57oaUnUrGZTS9Cd6jyUrwsmmqpZgocaRMDClF7NQuulHHg-JM_bpT_-6UBHV0Bz9ih2Xq</recordid><startdate>20110427</startdate><enddate>20110427</enddate><creator>Bonatsos, Dennis</creator><creator>Georgoudis, P. E.</creator><creator>Lenis, D.</creator><creator>Minkov, N.</creator><creator>Quesne, C.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20110427</creationdate><title>Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential</title><author>Bonatsos, Dennis ; Georgoudis, P. E. ; Lenis, D. ; Minkov, N. ; Quesne, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c275t-c35ec6d9dee30ef2e49fd81adddf8b03d0bd58ad58b1cc3646613a0abcb302a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>APPROXIMATIONS</topic><topic>AXIAL SYMMETRY</topic><topic>CALCULATION METHODS</topic><topic>DEFORMATION</topic><topic>DEFORMED NUCLEI</topic><topic>E2-TRANSITIONS</topic><topic>ENERGY-LEVEL TRANSITIONS</topic><topic>FUNCTIONS</topic><topic>HAMILTONIANS</topic><topic>MASS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>MECHANICS</topic><topic>MOMENT OF INERTIA</topic><topic>MULTIPOLE TRANSITIONS</topic><topic>NUCLEAR DEFORMATION</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>NUCLEI</topic><topic>QUANTUM MECHANICS</topic><topic>QUANTUM OPERATORS</topic><topic>SPECTRA</topic><topic>SUPERSYMMETRY</topic><topic>SYMMETRY</topic><topic>WAVE FUNCTIONS</topic><toplevel>online_resources</toplevel><creatorcontrib>Bonatsos, Dennis</creatorcontrib><creatorcontrib>Georgoudis, P. E.</creatorcontrib><creatorcontrib>Lenis, D.</creatorcontrib><creatorcontrib>Minkov, N.</creatorcontrib><creatorcontrib>Quesne, C.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Physical review. C, Nuclear physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bonatsos, Dennis</au><au>Georgoudis, P. E.</au><au>Lenis, D.</au><au>Minkov, N.</au><au>Quesne, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential</atitle><jtitle>Physical review. C, Nuclear physics</jtitle><date>2011-04-27</date><risdate>2011</risdate><volume>83</volume><issue>4</issue><artnum>044321</artnum><issn>0556-2813</issn><eissn>1089-490X</eissn><abstract>Analytical expressions for spectra and wave functions are derived for a Bohr Hamiltonian, describing the collective motion of deformed nuclei, in which the mass is allowed to depend on the nuclear deformation. Solutions are obtained for separable potentials consisting of a Davidson potential in the {beta} variable, in the cases of {gamma}-unstable nuclei, axially symmetric prolate deformed nuclei, and triaxial nuclei, implementing the usual approximations in each case. The solution, called the deformation-dependent mass (DDM) Davidson model, is achieved by using techniques of supersymmetric quantum mechanics (SUSYQM), involving a deformed shape invariance condition. Spectra and B(E2) transition rates are compared to experimental data. The dependence of the mass on the deformation, dictated by SUSYQM for the potential used, reduces the rate of increase of the moment of inertia with deformation, removing a main drawback of the model.</abstract><cop>United States</cop><doi>10.1103/PhysRevC.83.044321</doi></addata></record>
fulltext fulltext
identifier ISSN: 0556-2813
ispartof Physical review. C, Nuclear physics, 2011-04, Vol.83 (4), Article 044321
issn 0556-2813
1089-490X
language eng
recordid cdi_osti_scitechconnect_21499572
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects APPROXIMATIONS
AXIAL SYMMETRY
CALCULATION METHODS
DEFORMATION
DEFORMED NUCLEI
E2-TRANSITIONS
ENERGY-LEVEL TRANSITIONS
FUNCTIONS
HAMILTONIANS
MASS
MATHEMATICAL OPERATORS
MATHEMATICAL SOLUTIONS
MECHANICS
MOMENT OF INERTIA
MULTIPOLE TRANSITIONS
NUCLEAR DEFORMATION
NUCLEAR PHYSICS AND RADIATION PHYSICS
NUCLEI
QUANTUM MECHANICS
QUANTUM OPERATORS
SPECTRA
SUPERSYMMETRY
SYMMETRY
WAVE FUNCTIONS
title Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bohr%20Hamiltonian%20with%20a%20deformation-dependent%20mass%20term%20for%20the%20Davidson%20potential&rft.jtitle=Physical%20review.%20C,%20Nuclear%20physics&rft.au=Bonatsos,%20Dennis&rft.date=2011-04-27&rft.volume=83&rft.issue=4&rft.artnum=044321&rft.issn=0556-2813&rft.eissn=1089-490X&rft_id=info:doi/10.1103/PhysRevC.83.044321&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevC_83_044321%3C/crossref_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c275t-c35ec6d9dee30ef2e49fd81adddf8b03d0bd58ad58b1cc3646613a0abcb302a33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true