Loading…
Material gauge factor of directional electric potential drop sensors for creep monitoring
Directional electric potential drop measurements can be exploited for in-situ monitoring of creep in metals. The sensor monitors the variation in the ratio of the resistances measured simultaneously in the axial and lateral directions using a square-electrode configuration. This method can efficient...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Directional electric potential drop measurements can be exploited for in-situ monitoring of creep in metals. The sensor monitors the variation in the ratio of the resistances measured simultaneously in the axial and lateral directions using a square-electrode configuration. This method can efficiently separate the mostly isotropic common part of the resistivity variation caused by reversible temperature variations from the mostly anisotropic differential part caused by direct geometrical (size and shape) and indirect material (resistivity) effects of creep. Similarly to ordinary strain gauges, the relative sensitivity of the sensor is defined as a gauge factor that can be approximated as the sum of geometrical and material parts. Initially, subtle material changes produce weak electric anisotropy via reversible and irreversible piezoresistivity due to elastic and plastic strains, respectively. At high temperature, much stronger irreversible resistivity changes also occur due to preferentially aligned clusters of cavities developing along grain boundaries approximately perpendicular to the applied stress and subsequent cracks forming between these cavities. The ensuing electric anisotropy is detected by the directional sensor. Although the material effects remain smaller than the geometrical ones up to the initiation of preferentially oriented cracks, later the material gauge factor sharply increases and close to rupture can reach a value of more than 10. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.3592075 |