Loading…
Microwave air plasma source at atmospheric pressure: Experiment and theory
An experimental and theoretical investigation of the axial structure of a surface wave (2.45 GHz) driven atmospheric plasma source in air with a small admixture (1%) of water vapor has been performed. Measurements of the gas temperature and of the intensities of the O(777.4 nm), O(844.6 nm), and O(6...
Saved in:
Published in: | Journal of applied physics 2010-12, Vol.108 (12), p.123305-123305-18 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An experimental and theoretical investigation of the axial structure of a surface wave (2.45 GHz) driven atmospheric plasma source in air with a small admixture (1%) of water vapor has been performed. Measurements of the gas temperature and of the intensities of the O(777.4 nm), O(844.6 nm), and O(630 nm) atomic lines and the
NO
(
γ
)
molecular band versus input power and axial position were carried out. Amplitude and phase sensitive measurements have also been performed to derive the surface wave dispersion characteristics. The experimental results are analyzed in terms of a one-dimensional theoretical model based on a self-consistent treatment of particle kinetics, gas dynamics, and wave electrodynamics. The predicted gas temperature and emission line intensities variations with power and axial position are shown to compare well with experiment. "Hot" excited O atoms (with kinetic energy
∼
2
eV
) have been detected. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3525245 |