Loading…
Gyrokinetic Fokker-Planck collision operator
The gyrokinetic linearized exact Fokker-Planck collision operator is obtained in a form suitable for plasma gyrokinetic equations, for arbitrary mass ratio. The linearized Fokker-Planck operator includes both the test-particle and field-particle contributions, and automatically conserves particles,...
Saved in:
Published in: | Physical review letters 2011-05, Vol.106 (19), p.195002-195002 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The gyrokinetic linearized exact Fokker-Planck collision operator is obtained in a form suitable for plasma gyrokinetic equations, for arbitrary mass ratio. The linearized Fokker-Planck operator includes both the test-particle and field-particle contributions, and automatically conserves particles, momentum, and energy, while ensuring non-negative entropy production. Finite gyroradius effects in both field-particle and test-particle terms are evaluated. When implemented in gyrokinetic simulations, these effects can be precomputed. The field-particle operator at each time step requires the evaluation of a single two-dimensional integral, and is not only more accurate, but appears to be less expensive to evaluate than conserving model operators. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.106.195002 |