Loading…
Entropy driven atomic motion in laser-excited bismuth
We introduce a thermodynamical model based on the two-temperature approach in order to fully understand the dynamics of the coherent A(1g) phonon in laser-excited bismuth. Using this model, we simulate the time evolution of (111) Bragg peak intensities measured by Fritz et al. [Science 315, 633 (200...
Saved in:
Published in: | Physical review letters 2011-04, Vol.106 (15), p.155503-155503, Article 155503 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We introduce a thermodynamical model based on the two-temperature approach in order to fully understand the dynamics of the coherent A(1g) phonon in laser-excited bismuth. Using this model, we simulate the time evolution of (111) Bragg peak intensities measured by Fritz et al. [Science 315, 633 (2007)] in femtosecond x-ray diffraction experiments performed on a bismuth film for different laser fluences. The agreement between theoretical and experimental results is striking not only because we use fluences very close to the experimental ones but also because most of the model parameters are obtained from ab initio calculations performed for different electron temperatures. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.106.155503 |