Loading…
ABUNDANCES OF REFRACTORY ELEMENTS FOR G-TYPE STARS WITH EXTRASOLAR PLANETS
We confirm the difference in chemical abundance between stars with and without exoplanets and present the relation between chemical abundances and physical properties of exoplanets, such as planetary mass and the semimajor axis of planetary orbit. We obtained the spectra of 52 G-type stars from the...
Saved in:
Published in: | The Astrophysical journal 2011-08, Vol.736 (2), p.87-jQuery1323905336286='48' |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We confirm the difference in chemical abundance between stars with and without exoplanets and present the relation between chemical abundances and physical properties of exoplanets, such as planetary mass and the semimajor axis of planetary orbit. We obtained the spectra of 52 G-type stars from the Bohyunsan Optical Astronomy Observatory (BOAO) Echelle Spectrograph and carried out abundance analyses for 12 elements: Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni. We first found that the [Mn/Fe] ratios of planet-host stars are higher than those of comparison stars over the entire metallicity range, and we then found that in metal-poor stars of [Fe/H] < --0.4 the abundance difference was larger than in metal-rich samples, especially for the elements of Mg, Al, Sc, Ti, V, and Co. After examining the relation between planet properties and metallicities of planet-host stars, we observed that planet-host stars with low metallicities tend to have several low-mass planets (J) instead of a massive gas-giant planet. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.1088/0004-637X/736/2/87 |