Loading…
Correspondence between Hanbury-Brown–Twiss radii and the emission zone in noncentral heavy ion collisions
In noncentral collisions between ultrarelativistic heavy ions, the freeze-out distribution is anisotropic, and its major longitudinal axis may be tilted away from the beam direction. The shape and orientation of this distribution are particularly interesting, as they provide a snapshot of the evolvi...
Saved in:
Published in: | Physical review. C, Nuclear physics Nuclear physics, 2011-07, Vol.84 (1), Article 014908 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In noncentral collisions between ultrarelativistic heavy ions, the freeze-out distribution is anisotropic, and its major longitudinal axis may be tilted away from the beam direction. The shape and orientation of this distribution are particularly interesting, as they provide a snapshot of the evolving source and reflect the space-time aspect of anisotropic flow. Experimentally, this information is extracted by measuring pion Hanbury-Brown-Twiss (HBT) radii as a function of angle with respect to the reaction plane. The connection between measured radius oscillations and the underlying geometry is necessarily model-dependent; many existing formulas are strictly valid only for Gaussian sources with no collective flow. With a realistic transport model of the collision, which generates flow and non-Gaussian sources, we find that these formulas approximately reflect the anisotropy of the freeze-out distribution. |
---|---|
ISSN: | 0556-2813 1089-490X |
DOI: | 10.1103/PhysRevC.84.014908 |