Loading…
Photon-assisted tunneling in a biased strongly correlated Bose gas
We study the impact of coherently generated lattice photons on an atomic Mott insulator subjected to a uniform force. Analogous to an array of tunnel-coupled and biased quantum dots, we observe sharp, interaction-shifted photon-assisted tunneling resonances corresponding to tunneling one and two lat...
Saved in:
Published in: | Physical review letters 2011-08, Vol.107 (9), p.095301 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We study the impact of coherently generated lattice photons on an atomic Mott insulator subjected to a uniform force. Analogous to an array of tunnel-coupled and biased quantum dots, we observe sharp, interaction-shifted photon-assisted tunneling resonances corresponding to tunneling one and two lattice sites either with or against the force and resolve multiorbital shifts of these resonances. By driving a Landau-Zener sweep across such a resonance, we realize a quantum phase transition between a paramagnet and an antiferromagnet and observe quench dynamics when the system is tuned to the critical point. Direct extensions will produce gauge fields and site-resolved spin flips, for topological physics and quantum computing. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.107.095301 |