Loading…

MULTIPLICITY, DISKS, AND JETS IN THE NGC 2071 STAR-FORMING REGION

We present centimeter (cm) and millimeter (mm) observations of the NGC 2071 star-forming region performed with the Very Large Array (VLA) and Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detected counterparts at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, I...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2012-02, Vol.746 (1), p.1-10
Main Authors: CARRASCO-GONZALEZ, Carlos, OSORIO, Mayra, ANGLADA, Gutllem, D'ALESSIO, Paola, RODRIGUEZ, Luis F, GOMEZ, José F, TORRELLES, José M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present centimeter (cm) and millimeter (mm) observations of the NGC 2071 star-forming region performed with the Very Large Array (VLA) and Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detected counterparts at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, IRS 3, and VLA 1. All these sources show spectral energy distributions (SEDs) dominated by free-free thermal emission at cm wavelengths and thermal dust emission at mm wavelengths, suggesting that all of them are associated with young stellar objects (YSOs). IRS 1 shows a complex morphology at 3.6 cm, with changes in the direction of its elongation. We discuss two possible explanations to this morphology: the result of changes in the direction of a jet due to interactions with a dense ambient medium, or that we are actually observing the superposition of two jets arising from two components of a binary system. Higher angular resolution observations at 1.3 cm support the second possibility, since a double source is inferred at this wavelength. IRS 3 shows a clear jet-like morphology at 3.6 cm. Over a timespan of four years, we observed changes in the morphology of this source that we interpret as due to ejection of ionized material in a jet. The emission at 3 mm of IRS 3 is angularly resolved, with a deconvolved size (FWHM) of ~120 AU, and seems to be tracing a dusty circumstellar disk perpendicular to the radio jet. An irradiated accretion disk model around an intermediate-mass YSO can account for the observed SED and spatial intensity profile at 3 mm, supporting this interpretation.
ISSN:0004-637X
1538-4357
DOI:10.1088/0004-637X/746/1/71