Loading…
Tungsten erosion and divertor leakage from the DIII-D SAS-VW tungsten-coated divertor in experiments with neon gas seeding
Collector probes have been used to examine tungsten divertor leakage in a variety of scenarios with low-Z impurity seeding during operation with the new tungsten-coated SAS-VW divertor in DIII-D. Measurements of tungsten deposition on collector probes inserted into the far Scrape-off-Layer (SOL) are...
Saved in:
Published in: | Nuclear materials and energy 2023-09, Vol.37 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Collector probes have been used to examine tungsten divertor leakage in a variety of scenarios with low-Z impurity seeding during operation with the new tungsten-coated SAS-VW divertor in DIII-D. Measurements of tungsten deposition on collector probes inserted into the far Scrape-off-Layer (SOL) are used to deduce how efficiently tungsten leaks out of the closed, V-shaped divertor after it is eroded from the target surfaces. Qualitative differences in the tungsten deposition patterns across the collector probes provide clear experimental evidence that the SOL conditions depend on the low-Z impurity seeding conditions. These measurements show that in scenarios where neon gas is injected into the plasma, the tungsten divertor leakage and SOL transport depend on the poloidal location from which the neon is injected. In particular, neon injection from the Inner Midplane and Outer Midplane appear to each result in higher divertor leakage by a factor of 2 to 3 compared to cases with neon injection from either the SOL Crown or from the SAS-VW divertor itself. |
---|---|
ISSN: | 2352-1791 2352-1791 |