Loading…
Growth mechanism and electronic properties of epitaxial In{sub 2}O{sub 3} films on sapphire
In this work, we report on the epitaxial growth of high-quality cubic indium oxide thick films on c-plane sapphire substrates using a two-step growth process. The epitaxial relationship of In{sub 2}O{sub 3} on (0001) Al{sub 2}O{sub 3} has been investigated. The (222) plane spacing and lattice parame...
Saved in:
Published in: | Journal of applied physics 2011-11, Vol.110 (9) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we report on the epitaxial growth of high-quality cubic indium oxide thick films on c-plane sapphire substrates using a two-step growth process. The epitaxial relationship of In{sub 2}O{sub 3} on (0001) Al{sub 2}O{sub 3} has been investigated. The (222) plane spacing and lattice parameter of a most strain-relaxed high-quality In{sub 2}O{sub 3} film have been determined to be 292.58 pm and 1013.53 pm, respectively. The electronic properties in dependence of the film thickness are interpreted using a three-region model. The density at the surface and interface totals (3.3{+-}1.5)x10{sup 13}cm{sup -2}, while the background electron density in the bulk was determined to be (2.4{+-}0.5)x10{sup 18}cm{sup -3}. Furthermore, post treatments such as irradiation via ultraviolet light and ozone oxidation have been found to influence only the surface layer, while the bulk electronic properties remain unchanged. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.3658217 |