Loading…

Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition

We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnet...

Full description

Saved in:
Bibliographic Details
Published in:Astrophysical journal. Letters 2011-11, Vol.742 (1), p.L9-jQuery1323914751411='48'
Main Authors: Commerçon, Benoît, Hennebelle, Patrick, Henning, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993
cites cdi_FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993
container_end_page jQuery1323914751411='48'
container_issue 1
container_start_page L9
container_title Astrophysical journal. Letters
container_volume 742
creator Commerçon, Benoît
Hennebelle, Patrick
Henning, Thomas
description We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnetic braking effects and radiative shocks on scales
doi_str_mv 10.1088/2041-8205/742/1/L9
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22047355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>920798252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVoIOmmfyAnQw8lB3dHkhVLvYVN0gRcCqU5C315V8EruZIT2P76ynjJJZfCwAwzz7wM8yJ0ieErBs7XBBpccwJs3TZkjdedOEHnxyamH95qYGfoY87PAASuMT9HcROHQY3ZVbGvfqic_asreRvc5P86W926UGabmFyunrIP2-qXsl5NPoYjFncHm6I9BLX3Jn-r7lQaDtV9Utu9C9NCPoad134uL9Bpr4bsPh3zCj3d3_3ePNTdz--Pm5uuNozQqW6AWK1Zz7m2pukJ6EY4BaDUNeOArdBtT3XDGl1C0NYoaph1jGsluBCCrtDnRTfmycts_OTMzsQQnJkkKd9oKWOFulqonRrkmPxepYOMysuHm07OPaAtZxjaV1zYLws7pvjnxeVJ7n02rnwvuPiSpSDQCk7K-StEFtKkmHNy_Zs0BjnbJWc35OyGLHZJLLv54HpZ8nH8P_7qPf-ek6Pt6T8LZKLb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920798252</pqid></control><display><type>article</type><title>Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition</title><source>EZB Electronic Journals Library</source><creator>Commerçon, Benoît ; Hennebelle, Patrick ; Henning, Thomas</creator><creatorcontrib>Commerçon, Benoît ; Hennebelle, Patrick ; Henning, Thomas</creatorcontrib><description>We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnetic braking effects and radiative shocks on scales &lt;100 AU. We investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores. We identify a new mechanism that inhibits initial fragmentation of massive dense cores where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. Magnetic braking is transporting angular momentum outward and is lowering the rotational support and is thus increasing the infall velocity. This enhances the radiative feedback owing to the accretion shock on the first core. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation while moderately magnetized massive dense cores are more appropriate forming OB associations or small star clusters.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.1088/2041-8205/742/1/L9</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>ANGULAR MOMENTUM ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; CARBON MONOXIDE ; FEEDBACK ; GRAVITATIONAL COLLAPSE ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; MASS ; PHOTON EMISSION ; Physics ; RADIANT HEAT TRANSFER ; RESOLUTION ; STAR CLUSTERS ; STARS ; TURBULENCE ; VELOCITY</subject><ispartof>Astrophysical journal. Letters, 2011-11, Vol.742 (1), p.L9-jQuery1323914751411='48'</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993</citedby><cites>FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993</cites><orcidid>0000-0003-2407-1025 ; 0000-0002-0472-7202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03785107$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22047355$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Commerçon, Benoît</creatorcontrib><creatorcontrib>Hennebelle, Patrick</creatorcontrib><creatorcontrib>Henning, Thomas</creatorcontrib><title>Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition</title><title>Astrophysical journal. Letters</title><description>We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnetic braking effects and radiative shocks on scales &lt;100 AU. We investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores. We identify a new mechanism that inhibits initial fragmentation of massive dense cores where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. Magnetic braking is transporting angular momentum outward and is lowering the rotational support and is thus increasing the infall velocity. This enhances the radiative feedback owing to the accretion shock on the first core. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation while moderately magnetized massive dense cores are more appropriate forming OB associations or small star clusters.</description><subject>ANGULAR MOMENTUM</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>CARBON MONOXIDE</subject><subject>FEEDBACK</subject><subject>GRAVITATIONAL COLLAPSE</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MASS</subject><subject>PHOTON EMISSION</subject><subject>Physics</subject><subject>RADIANT HEAT TRANSFER</subject><subject>RESOLUTION</subject><subject>STAR CLUSTERS</subject><subject>STARS</subject><subject>TURBULENCE</subject><subject>VELOCITY</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU1r3DAQhkVoIOmmfyAnQw8lB3dHkhVLvYVN0gRcCqU5C315V8EruZIT2P76ynjJJZfCwAwzz7wM8yJ0ieErBs7XBBpccwJs3TZkjdedOEHnxyamH95qYGfoY87PAASuMT9HcROHQY3ZVbGvfqic_asreRvc5P86W926UGabmFyunrIP2-qXsl5NPoYjFncHm6I9BLX3Jn-r7lQaDtV9Utu9C9NCPoad134uL9Bpr4bsPh3zCj3d3_3ePNTdz--Pm5uuNozQqW6AWK1Zz7m2pukJ6EY4BaDUNeOArdBtT3XDGl1C0NYoaph1jGsluBCCrtDnRTfmycts_OTMzsQQnJkkKd9oKWOFulqonRrkmPxepYOMysuHm07OPaAtZxjaV1zYLws7pvjnxeVJ7n02rnwvuPiSpSDQCk7K-StEFtKkmHNy_Zs0BjnbJWc35OyGLHZJLLv54HpZ8nH8P_7qPf-ek6Pt6T8LZKLb</recordid><startdate>20111120</startdate><enddate>20111120</enddate><creator>Commerçon, Benoît</creator><creator>Hennebelle, Patrick</creator><creator>Henning, Thomas</creator><general>IOP Publishing</general><general>Bristol : IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2407-1025</orcidid><orcidid>https://orcid.org/0000-0002-0472-7202</orcidid></search><sort><creationdate>20111120</creationdate><title>Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition</title><author>Commerçon, Benoît ; Hennebelle, Patrick ; Henning, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ANGULAR MOMENTUM</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>CARBON MONOXIDE</topic><topic>FEEDBACK</topic><topic>GRAVITATIONAL COLLAPSE</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MASS</topic><topic>PHOTON EMISSION</topic><topic>Physics</topic><topic>RADIANT HEAT TRANSFER</topic><topic>RESOLUTION</topic><topic>STAR CLUSTERS</topic><topic>STARS</topic><topic>TURBULENCE</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Commerçon, Benoît</creatorcontrib><creatorcontrib>Hennebelle, Patrick</creatorcontrib><creatorcontrib>Henning, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Commerçon, Benoît</au><au>Hennebelle, Patrick</au><au>Henning, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition</atitle><jtitle>Astrophysical journal. Letters</jtitle><date>2011-11-20</date><risdate>2011</risdate><volume>742</volume><issue>1</issue><spage>L9</spage><epage>jQuery1323914751411='48'</epage><pages>L9-jQuery1323914751411='48'</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnetic braking effects and radiative shocks on scales &lt;100 AU. We investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores. We identify a new mechanism that inhibits initial fragmentation of massive dense cores where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. Magnetic braking is transporting angular momentum outward and is lowering the rotational support and is thus increasing the infall velocity. This enhances the radiative feedback owing to the accretion shock on the first core. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation while moderately magnetized massive dense cores are more appropriate forming OB associations or small star clusters.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/2041-8205/742/1/L9</doi><orcidid>https://orcid.org/0000-0003-2407-1025</orcidid><orcidid>https://orcid.org/0000-0002-0472-7202</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2011-11, Vol.742 (1), p.L9-jQuery1323914751411='48'
issn 2041-8205
2041-8213
language eng
recordid cdi_osti_scitechconnect_22047355
source EZB Electronic Journals Library
subjects ANGULAR MOMENTUM
ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
CARBON MONOXIDE
FEEDBACK
GRAVITATIONAL COLLAPSE
MAGNETIC FIELDS
MAGNETOHYDRODYNAMICS
MASS
PHOTON EMISSION
Physics
RADIANT HEAT TRANSFER
RESOLUTION
STAR CLUSTERS
STARS
TURBULENCE
VELOCITY
title Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collapse%20of%20Massive%20Magnetized%20Dense%20Cores%20Using%20Radiation%20Magnetohydrodynamics:%20Early%20Fragmentation%20Inhibition&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Commer%C3%A7on,%20Beno%C3%AEt&rft.date=2011-11-20&rft.volume=742&rft.issue=1&rft.spage=L9&rft.epage=jQuery1323914751411='48'&rft.pages=L9-jQuery1323914751411='48'&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.1088/2041-8205/742/1/L9&rft_dat=%3Cproquest_osti_%3E920798252%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920798252&rft_id=info:pmid/&rfr_iscdi=true