Loading…
Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition
We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnet...
Saved in:
Published in: | Astrophysical journal. Letters 2011-11, Vol.742 (1), p.L9-jQuery1323914751411='48' |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993 |
---|---|
cites | cdi_FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993 |
container_end_page | jQuery1323914751411='48' |
container_issue | 1 |
container_start_page | L9 |
container_title | Astrophysical journal. Letters |
container_volume | 742 |
creator | Commerçon, Benoît Hennebelle, Patrick Henning, Thomas |
description | We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnetic braking effects and radiative shocks on scales |
doi_str_mv | 10.1088/2041-8205/742/1/L9 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22047355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>920798252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993</originalsourceid><addsrcrecordid>eNqNkU1r3DAQhkVoIOmmfyAnQw8lB3dHkhVLvYVN0gRcCqU5C315V8EruZIT2P76ynjJJZfCwAwzz7wM8yJ0ieErBs7XBBpccwJs3TZkjdedOEHnxyamH95qYGfoY87PAASuMT9HcROHQY3ZVbGvfqic_asreRvc5P86W926UGabmFyunrIP2-qXsl5NPoYjFncHm6I9BLX3Jn-r7lQaDtV9Utu9C9NCPoad134uL9Bpr4bsPh3zCj3d3_3ePNTdz--Pm5uuNozQqW6AWK1Zz7m2pukJ6EY4BaDUNeOArdBtT3XDGl1C0NYoaph1jGsluBCCrtDnRTfmycts_OTMzsQQnJkkKd9oKWOFulqonRrkmPxepYOMysuHm07OPaAtZxjaV1zYLws7pvjnxeVJ7n02rnwvuPiSpSDQCk7K-StEFtKkmHNy_Zs0BjnbJWc35OyGLHZJLLv54HpZ8nH8P_7qPf-ek6Pt6T8LZKLb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>920798252</pqid></control><display><type>article</type><title>Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition</title><source>EZB Electronic Journals Library</source><creator>Commerçon, Benoît ; Hennebelle, Patrick ; Henning, Thomas</creator><creatorcontrib>Commerçon, Benoît ; Hennebelle, Patrick ; Henning, Thomas</creatorcontrib><description>We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnetic braking effects and radiative shocks on scales <100 AU. We investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores. We identify a new mechanism that inhibits initial fragmentation of massive dense cores where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. Magnetic braking is transporting angular momentum outward and is lowering the rotational support and is thus increasing the infall velocity. This enhances the radiative feedback owing to the accretion shock on the first core. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation while moderately magnetized massive dense cores are more appropriate forming OB associations or small star clusters.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.1088/2041-8205/742/1/L9</identifier><language>eng</language><publisher>United States: IOP Publishing</publisher><subject>ANGULAR MOMENTUM ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; CARBON MONOXIDE ; FEEDBACK ; GRAVITATIONAL COLLAPSE ; MAGNETIC FIELDS ; MAGNETOHYDRODYNAMICS ; MASS ; PHOTON EMISSION ; Physics ; RADIANT HEAT TRANSFER ; RESOLUTION ; STAR CLUSTERS ; STARS ; TURBULENCE ; VELOCITY</subject><ispartof>Astrophysical journal. Letters, 2011-11, Vol.742 (1), p.L9-jQuery1323914751411='48'</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993</citedby><cites>FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993</cites><orcidid>0000-0003-2407-1025 ; 0000-0002-0472-7202</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03785107$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22047355$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Commerçon, Benoît</creatorcontrib><creatorcontrib>Hennebelle, Patrick</creatorcontrib><creatorcontrib>Henning, Thomas</creatorcontrib><title>Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition</title><title>Astrophysical journal. Letters</title><description>We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnetic braking effects and radiative shocks on scales <100 AU. We investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores. We identify a new mechanism that inhibits initial fragmentation of massive dense cores where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. Magnetic braking is transporting angular momentum outward and is lowering the rotational support and is thus increasing the infall velocity. This enhances the radiative feedback owing to the accretion shock on the first core. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation while moderately magnetized massive dense cores are more appropriate forming OB associations or small star clusters.</description><subject>ANGULAR MOMENTUM</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>CARBON MONOXIDE</subject><subject>FEEDBACK</subject><subject>GRAVITATIONAL COLLAPSE</subject><subject>MAGNETIC FIELDS</subject><subject>MAGNETOHYDRODYNAMICS</subject><subject>MASS</subject><subject>PHOTON EMISSION</subject><subject>Physics</subject><subject>RADIANT HEAT TRANSFER</subject><subject>RESOLUTION</subject><subject>STAR CLUSTERS</subject><subject>STARS</subject><subject>TURBULENCE</subject><subject>VELOCITY</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkU1r3DAQhkVoIOmmfyAnQw8lB3dHkhVLvYVN0gRcCqU5C315V8EruZIT2P76ynjJJZfCwAwzz7wM8yJ0ieErBs7XBBpccwJs3TZkjdedOEHnxyamH95qYGfoY87PAASuMT9HcROHQY3ZVbGvfqic_asreRvc5P86W926UGabmFyunrIP2-qXsl5NPoYjFncHm6I9BLX3Jn-r7lQaDtV9Utu9C9NCPoad134uL9Bpr4bsPh3zCj3d3_3ePNTdz--Pm5uuNozQqW6AWK1Zz7m2pukJ6EY4BaDUNeOArdBtT3XDGl1C0NYoaph1jGsluBCCrtDnRTfmycts_OTMzsQQnJkkKd9oKWOFulqonRrkmPxepYOMysuHm07OPaAtZxjaV1zYLws7pvjnxeVJ7n02rnwvuPiSpSDQCk7K-StEFtKkmHNy_Zs0BjnbJWc35OyGLHZJLLv54HpZ8nH8P_7qPf-ek6Pt6T8LZKLb</recordid><startdate>20111120</startdate><enddate>20111120</enddate><creator>Commerçon, Benoît</creator><creator>Hennebelle, Patrick</creator><creator>Henning, Thomas</creator><general>IOP Publishing</general><general>Bristol : IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-2407-1025</orcidid><orcidid>https://orcid.org/0000-0002-0472-7202</orcidid></search><sort><creationdate>20111120</creationdate><title>Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition</title><author>Commerçon, Benoît ; Hennebelle, Patrick ; Henning, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>ANGULAR MOMENTUM</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>CARBON MONOXIDE</topic><topic>FEEDBACK</topic><topic>GRAVITATIONAL COLLAPSE</topic><topic>MAGNETIC FIELDS</topic><topic>MAGNETOHYDRODYNAMICS</topic><topic>MASS</topic><topic>PHOTON EMISSION</topic><topic>Physics</topic><topic>RADIANT HEAT TRANSFER</topic><topic>RESOLUTION</topic><topic>STAR CLUSTERS</topic><topic>STARS</topic><topic>TURBULENCE</topic><topic>VELOCITY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Commerçon, Benoît</creatorcontrib><creatorcontrib>Hennebelle, Patrick</creatorcontrib><creatorcontrib>Henning, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Commerçon, Benoît</au><au>Hennebelle, Patrick</au><au>Henning, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition</atitle><jtitle>Astrophysical journal. Letters</jtitle><date>2011-11-20</date><risdate>2011</risdate><volume>742</volume><issue>1</issue><spage>L9</spage><epage>jQuery1323914751411='48'</epage><pages>L9-jQuery1323914751411='48'</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>We report the results of radiation-magnetohydrodynamics calculations in the context of high-mass star formation, using for the first time a self-consistent model for photon emission (i.e., via thermal emission and in radiative shocks) and with the high resolution necessary to properly resolve magnetic braking effects and radiative shocks on scales <100 AU. We investigate the combined effects of magnetic field, turbulence, and radiative transfer on the early phases of the collapse and the fragmentation of massive dense cores. We identify a new mechanism that inhibits initial fragmentation of massive dense cores where magnetic field and radiative transfer interplay. We show that this interplay becomes stronger as the magnetic field strength increases. Magnetic braking is transporting angular momentum outward and is lowering the rotational support and is thus increasing the infall velocity. This enhances the radiative feedback owing to the accretion shock on the first core. We speculate that highly magnetized massive dense cores are good candidates for isolated massive star formation while moderately magnetized massive dense cores are more appropriate forming OB associations or small star clusters.</abstract><cop>United States</cop><pub>IOP Publishing</pub><doi>10.1088/2041-8205/742/1/L9</doi><orcidid>https://orcid.org/0000-0003-2407-1025</orcidid><orcidid>https://orcid.org/0000-0002-0472-7202</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2011-11, Vol.742 (1), p.L9-jQuery1323914751411='48' |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_osti_scitechconnect_22047355 |
source | EZB Electronic Journals Library |
subjects | ANGULAR MOMENTUM ASTROPHYSICS ASTROPHYSICS, COSMOLOGY AND ASTRONOMY CARBON MONOXIDE FEEDBACK GRAVITATIONAL COLLAPSE MAGNETIC FIELDS MAGNETOHYDRODYNAMICS MASS PHOTON EMISSION Physics RADIANT HEAT TRANSFER RESOLUTION STAR CLUSTERS STARS TURBULENCE VELOCITY |
title | Collapse of Massive Magnetized Dense Cores Using Radiation Magnetohydrodynamics: Early Fragmentation Inhibition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A03%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Collapse%20of%20Massive%20Magnetized%20Dense%20Cores%20Using%20Radiation%20Magnetohydrodynamics:%20Early%20Fragmentation%20Inhibition&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Commer%C3%A7on,%20Beno%C3%AEt&rft.date=2011-11-20&rft.volume=742&rft.issue=1&rft.spage=L9&rft.epage=jQuery1323914751411='48'&rft.pages=L9-jQuery1323914751411='48'&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.1088/2041-8205/742/1/L9&rft_dat=%3Cproquest_osti_%3E920798252%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c523t-402dbb5f88bdc4f20b49ea00aa65801d9b7f3b454b54b937ca3c5de58ba989993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=920798252&rft_id=info:pmid/&rfr_iscdi=true |