Loading…

Surface Phonon Polariton-Mediated Near-Field Radiative Heat Transfer at Cryogenic Temperatures

Recent experiments, at room temperature, have shown that near-field radiative heat transfer (NFRHT) via surface phonon polaritons (SPhPs) exceeds the blackbody limit by several orders of magnitude. Yet, SPhP-mediated NFRHT at cryogenic temperatures remains experimentally unexplored. Here, we probe t...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2023-11, Vol.131 (19), p.196302-196302, Article 196302
Main Authors: Yan, Shen, Luan, Yuxuan, Lim, Ju Won, Mittapally, Rohith, Reihani, Amin, Wang, Zhongyong, Tsurimaki, Yoichiro, Fan, Shanhui, Reddy, Pramod, Meyhofer, Edgar
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c315t-21f3639460fec29e55cc7a50def18fff138018f848338e23f6a878b9604bb54d3
cites cdi_FETCH-LOGICAL-c315t-21f3639460fec29e55cc7a50def18fff138018f848338e23f6a878b9604bb54d3
container_end_page 196302
container_issue 19
container_start_page 196302
container_title Physical review letters
container_volume 131
creator Yan, Shen
Luan, Yuxuan
Lim, Ju Won
Mittapally, Rohith
Reihani, Amin
Wang, Zhongyong
Tsurimaki, Yoichiro
Fan, Shanhui
Reddy, Pramod
Meyhofer, Edgar
description Recent experiments, at room temperature, have shown that near-field radiative heat transfer (NFRHT) via surface phonon polaritons (SPhPs) exceeds the blackbody limit by several orders of magnitude. Yet, SPhP-mediated NFRHT at cryogenic temperatures remains experimentally unexplored. Here, we probe thermal transport in nanoscale gaps between a silica sphere and a planar silica surface from 77-300 K. These experiments reveal that cryogenic NFRHT has strong contributions from SPhPs and does not follow the T^{3} temperature (T) dependence of far-field thermal radiation. Our modeling based on fluctuational electrodynamics shows that the temperature dependence of NFRHT can be related to the confinement of heat transfer to two narrow frequency ranges and is well accounted for by a simple analytical model. These advances enable detailed NFRHT studies at cryogenic temperatures that are relevant to thermal management and solid-state cooling applications.
doi_str_mv 10.1103/PhysRevLett.131.196302
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_2205399</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2893838083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-21f3639460fec29e55cc7a50def18fff138018f848338e23f6a878b9604bb54d3</originalsourceid><addsrcrecordid>eNpNkE1LAzEURYMoWKt_QQZXbqa-TOYjWUpRK1QttW4NaebFRqaTmmQK_fdOGReu3uVxuBcOIdcUJpQCu1tsDmGJ-znGOKGMTqgoGWQnZEShEmlFaX5KRgCMpgKgOicXIXwDAM1KPiKf7503SmOy2LjWtcnCNcrb6Nr0BWurItbJKyqfPlps6mSpjj-7x2SGKiYrr9pg0Cd9nvqD-8LW6mSF2x16FTuP4ZKcGdUEvPq7Y_Lx-LCaztL529Pz9H6eakaLmGbUsJKJvASDOhNYFFpXqoAaDeXGGMo49IHnnDGOGTOl4hVfixLy9brIazYmN0OvC9HKoG1EvdGubVFHmWVQMCF66HaAdt79dBii3NqgsWlUi64LMuOC8X6pHxmTckC1dyF4NHLn7Vb5g6Qgj9blP-uyty4H6-wXCyp4sg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2893838083</pqid></control><display><type>article</type><title>Surface Phonon Polariton-Mediated Near-Field Radiative Heat Transfer at Cryogenic Temperatures</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Yan, Shen ; Luan, Yuxuan ; Lim, Ju Won ; Mittapally, Rohith ; Reihani, Amin ; Wang, Zhongyong ; Tsurimaki, Yoichiro ; Fan, Shanhui ; Reddy, Pramod ; Meyhofer, Edgar</creator><creatorcontrib>Yan, Shen ; Luan, Yuxuan ; Lim, Ju Won ; Mittapally, Rohith ; Reihani, Amin ; Wang, Zhongyong ; Tsurimaki, Yoichiro ; Fan, Shanhui ; Reddy, Pramod ; Meyhofer, Edgar</creatorcontrib><description>Recent experiments, at room temperature, have shown that near-field radiative heat transfer (NFRHT) via surface phonon polaritons (SPhPs) exceeds the blackbody limit by several orders of magnitude. Yet, SPhP-mediated NFRHT at cryogenic temperatures remains experimentally unexplored. Here, we probe thermal transport in nanoscale gaps between a silica sphere and a planar silica surface from 77-300 K. These experiments reveal that cryogenic NFRHT has strong contributions from SPhPs and does not follow the T^{3} temperature (T) dependence of far-field thermal radiation. Our modeling based on fluctuational electrodynamics shows that the temperature dependence of NFRHT can be related to the confinement of heat transfer to two narrow frequency ranges and is well accounted for by a simple analytical model. These advances enable detailed NFRHT studies at cryogenic temperatures that are relevant to thermal management and solid-state cooling applications.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.131.196302</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><ispartof>Physical review letters, 2023-11, Vol.131 (19), p.196302-196302, Article 196302</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-21f3639460fec29e55cc7a50def18fff138018f848338e23f6a878b9604bb54d3</citedby><cites>FETCH-LOGICAL-c315t-21f3639460fec29e55cc7a50def18fff138018f848338e23f6a878b9604bb54d3</cites><orcidid>0009-0006-7802-5904 ; 0000-0001-5719-6030 ; 0000-0002-7755-4533 ; 0000-0002-8074-3079 ; 0000-0002-7442-6931 ; 0000-0002-0784-1369 ; 0000-0003-3189-8821 ; 0000-0001-7700-9175 ; 0000-0001-7021-3173 ; 0000-0002-0081-9732 ; 0000000157196030 ; 0000000207841369 ; 0000000170213173 ; 0000000280743079 ; 0000000274426931 ; 0000000331898821 ; 0009000678025904 ; 0000000200819732 ; 0000000277554533 ; 0000000177009175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/2205399$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yan, Shen</creatorcontrib><creatorcontrib>Luan, Yuxuan</creatorcontrib><creatorcontrib>Lim, Ju Won</creatorcontrib><creatorcontrib>Mittapally, Rohith</creatorcontrib><creatorcontrib>Reihani, Amin</creatorcontrib><creatorcontrib>Wang, Zhongyong</creatorcontrib><creatorcontrib>Tsurimaki, Yoichiro</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Reddy, Pramod</creatorcontrib><creatorcontrib>Meyhofer, Edgar</creatorcontrib><title>Surface Phonon Polariton-Mediated Near-Field Radiative Heat Transfer at Cryogenic Temperatures</title><title>Physical review letters</title><description>Recent experiments, at room temperature, have shown that near-field radiative heat transfer (NFRHT) via surface phonon polaritons (SPhPs) exceeds the blackbody limit by several orders of magnitude. Yet, SPhP-mediated NFRHT at cryogenic temperatures remains experimentally unexplored. Here, we probe thermal transport in nanoscale gaps between a silica sphere and a planar silica surface from 77-300 K. These experiments reveal that cryogenic NFRHT has strong contributions from SPhPs and does not follow the T^{3} temperature (T) dependence of far-field thermal radiation. Our modeling based on fluctuational electrodynamics shows that the temperature dependence of NFRHT can be related to the confinement of heat transfer to two narrow frequency ranges and is well accounted for by a simple analytical model. These advances enable detailed NFRHT studies at cryogenic temperatures that are relevant to thermal management and solid-state cooling applications.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LAzEURYMoWKt_QQZXbqa-TOYjWUpRK1QttW4NaebFRqaTmmQK_fdOGReu3uVxuBcOIdcUJpQCu1tsDmGJ-znGOKGMTqgoGWQnZEShEmlFaX5KRgCMpgKgOicXIXwDAM1KPiKf7503SmOy2LjWtcnCNcrb6Nr0BWurItbJKyqfPlps6mSpjj-7x2SGKiYrr9pg0Cd9nvqD-8LW6mSF2x16FTuP4ZKcGdUEvPq7Y_Lx-LCaztL529Pz9H6eakaLmGbUsJKJvASDOhNYFFpXqoAaDeXGGMo49IHnnDGOGTOl4hVfixLy9brIazYmN0OvC9HKoG1EvdGubVFHmWVQMCF66HaAdt79dBii3NqgsWlUi64LMuOC8X6pHxmTckC1dyF4NHLn7Vb5g6Qgj9blP-uyty4H6-wXCyp4sg</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Yan, Shen</creator><creator>Luan, Yuxuan</creator><creator>Lim, Ju Won</creator><creator>Mittapally, Rohith</creator><creator>Reihani, Amin</creator><creator>Wang, Zhongyong</creator><creator>Tsurimaki, Yoichiro</creator><creator>Fan, Shanhui</creator><creator>Reddy, Pramod</creator><creator>Meyhofer, Edgar</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0009-0006-7802-5904</orcidid><orcidid>https://orcid.org/0000-0001-5719-6030</orcidid><orcidid>https://orcid.org/0000-0002-7755-4533</orcidid><orcidid>https://orcid.org/0000-0002-8074-3079</orcidid><orcidid>https://orcid.org/0000-0002-7442-6931</orcidid><orcidid>https://orcid.org/0000-0002-0784-1369</orcidid><orcidid>https://orcid.org/0000-0003-3189-8821</orcidid><orcidid>https://orcid.org/0000-0001-7700-9175</orcidid><orcidid>https://orcid.org/0000-0001-7021-3173</orcidid><orcidid>https://orcid.org/0000-0002-0081-9732</orcidid><orcidid>https://orcid.org/0000000157196030</orcidid><orcidid>https://orcid.org/0000000207841369</orcidid><orcidid>https://orcid.org/0000000170213173</orcidid><orcidid>https://orcid.org/0000000280743079</orcidid><orcidid>https://orcid.org/0000000274426931</orcidid><orcidid>https://orcid.org/0000000331898821</orcidid><orcidid>https://orcid.org/0009000678025904</orcidid><orcidid>https://orcid.org/0000000200819732</orcidid><orcidid>https://orcid.org/0000000277554533</orcidid><orcidid>https://orcid.org/0000000177009175</orcidid></search><sort><creationdate>20231110</creationdate><title>Surface Phonon Polariton-Mediated Near-Field Radiative Heat Transfer at Cryogenic Temperatures</title><author>Yan, Shen ; Luan, Yuxuan ; Lim, Ju Won ; Mittapally, Rohith ; Reihani, Amin ; Wang, Zhongyong ; Tsurimaki, Yoichiro ; Fan, Shanhui ; Reddy, Pramod ; Meyhofer, Edgar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-21f3639460fec29e55cc7a50def18fff138018f848338e23f6a878b9604bb54d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Shen</creatorcontrib><creatorcontrib>Luan, Yuxuan</creatorcontrib><creatorcontrib>Lim, Ju Won</creatorcontrib><creatorcontrib>Mittapally, Rohith</creatorcontrib><creatorcontrib>Reihani, Amin</creatorcontrib><creatorcontrib>Wang, Zhongyong</creatorcontrib><creatorcontrib>Tsurimaki, Yoichiro</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Reddy, Pramod</creatorcontrib><creatorcontrib>Meyhofer, Edgar</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Shen</au><au>Luan, Yuxuan</au><au>Lim, Ju Won</au><au>Mittapally, Rohith</au><au>Reihani, Amin</au><au>Wang, Zhongyong</au><au>Tsurimaki, Yoichiro</au><au>Fan, Shanhui</au><au>Reddy, Pramod</au><au>Meyhofer, Edgar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface Phonon Polariton-Mediated Near-Field Radiative Heat Transfer at Cryogenic Temperatures</atitle><jtitle>Physical review letters</jtitle><date>2023-11-10</date><risdate>2023</risdate><volume>131</volume><issue>19</issue><spage>196302</spage><epage>196302</epage><pages>196302-196302</pages><artnum>196302</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>Recent experiments, at room temperature, have shown that near-field radiative heat transfer (NFRHT) via surface phonon polaritons (SPhPs) exceeds the blackbody limit by several orders of magnitude. Yet, SPhP-mediated NFRHT at cryogenic temperatures remains experimentally unexplored. Here, we probe thermal transport in nanoscale gaps between a silica sphere and a planar silica surface from 77-300 K. These experiments reveal that cryogenic NFRHT has strong contributions from SPhPs and does not follow the T^{3} temperature (T) dependence of far-field thermal radiation. Our modeling based on fluctuational electrodynamics shows that the temperature dependence of NFRHT can be related to the confinement of heat transfer to two narrow frequency ranges and is well accounted for by a simple analytical model. These advances enable detailed NFRHT studies at cryogenic temperatures that are relevant to thermal management and solid-state cooling applications.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.131.196302</doi><tpages>1</tpages><orcidid>https://orcid.org/0009-0006-7802-5904</orcidid><orcidid>https://orcid.org/0000-0001-5719-6030</orcidid><orcidid>https://orcid.org/0000-0002-7755-4533</orcidid><orcidid>https://orcid.org/0000-0002-8074-3079</orcidid><orcidid>https://orcid.org/0000-0002-7442-6931</orcidid><orcidid>https://orcid.org/0000-0002-0784-1369</orcidid><orcidid>https://orcid.org/0000-0003-3189-8821</orcidid><orcidid>https://orcid.org/0000-0001-7700-9175</orcidid><orcidid>https://orcid.org/0000-0001-7021-3173</orcidid><orcidid>https://orcid.org/0000-0002-0081-9732</orcidid><orcidid>https://orcid.org/0000000157196030</orcidid><orcidid>https://orcid.org/0000000207841369</orcidid><orcidid>https://orcid.org/0000000170213173</orcidid><orcidid>https://orcid.org/0000000280743079</orcidid><orcidid>https://orcid.org/0000000274426931</orcidid><orcidid>https://orcid.org/0000000331898821</orcidid><orcidid>https://orcid.org/0009000678025904</orcidid><orcidid>https://orcid.org/0000000200819732</orcidid><orcidid>https://orcid.org/0000000277554533</orcidid><orcidid>https://orcid.org/0000000177009175</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2023-11, Vol.131 (19), p.196302-196302, Article 196302
issn 0031-9007
1079-7114
language eng
recordid cdi_osti_scitechconnect_2205399
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Surface Phonon Polariton-Mediated Near-Field Radiative Heat Transfer at Cryogenic Temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20Phonon%20Polariton-Mediated%20Near-Field%20Radiative%20Heat%20Transfer%20at%20Cryogenic%20Temperatures&rft.jtitle=Physical%20review%20letters&rft.au=Yan,%20Shen&rft.date=2023-11-10&rft.volume=131&rft.issue=19&rft.spage=196302&rft.epage=196302&rft.pages=196302-196302&rft.artnum=196302&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.131.196302&rft_dat=%3Cproquest_osti_%3E2893838083%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c315t-21f3639460fec29e55cc7a50def18fff138018f848338e23f6a878b9604bb54d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2893838083&rft_id=info:pmid/&rfr_iscdi=true