Loading…

A 130 point Nd:YAG Thomson scattering diagnostic on MAST

A Thomson scattering diagnostic designed to measure both edge and core physics has been implemented on MAST. The system uses eight Nd:YAG lasers, each with a repetition rate of 30 Hz. The relative and absolute timing of the lasers may be set arbitrarily to produce fast bursts of measurements to suit...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2010-10, Vol.81 (10), p.10D520-10D520-4
Main Authors: Scannell, R., Walsh, M. J., Dunstan, M. R., Figueiredo, J., Naylor, G., O'Gorman, T., Shibaev, S., Gibson, K. J., Wilson, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A Thomson scattering diagnostic designed to measure both edge and core physics has been implemented on MAST. The system uses eight Nd:YAG lasers, each with a repetition rate of 30 Hz. The relative and absolute timing of the lasers may be set arbitrarily to produce fast bursts of measurements to suit the time evolution of the physics being studied. The scattered light is collected at F/6 by a 100 kg six element lens system with an aperture stop of 290 mm. The collected light is then transferred to 130 polychromators by 130 independent fiber bundles. The data acquisition and processing are based on a distributed computer system of dual core processors embedded in 26 chassis. Each chassis is standalone and performs data acquisition and processing for five polychromators. This system allows data to be available quickly after the MAST shot and has potential for real-time operations.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.3460628