Loading…

Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear

Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 μm and milled (0.3–0.5 μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti partic...

Full description

Saved in:
Bibliographic Details
Published in:Materials characterization 2010-11, Vol.61 (11), p.1126-1134
Main Authors: Mordyuk, B.N., Silberschmidt, V.V., Prokopenko, G.I., Nesterenko, Yu.V., Iefimov, M.O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3
cites cdi_FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3
container_end_page 1134
container_issue 11
container_start_page 1126
container_title Materials characterization
container_volume 61
creator Mordyuk, B.N.
Silberschmidt, V.V.
Prokopenko, G.I.
Nesterenko, Yu.V.
Iefimov, M.O.
description Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 μm and milled (0.3–0.5 μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200–400 nm, while reinforcement with larger particles results in relatively large Al grains (1–2 μm). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti 3Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.
doi_str_mv 10.1016/j.matchar.2010.07.007
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22066235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044580310002287</els_id><sourcerecordid>831193571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3</originalsourceid><addsrcrecordid>eNqFkU9LJDEQxRvZBV3XjyAERPZij_nTnaT3sojoriB4mXso0xXM0JMeK9276Kc3zQxe95Qi_F7Vq1dVdS74SnChrzerLUz-BWglefnjZsW5OapOhDWqboTtvpSaN03dWq6Oq285bzjn2gpzUsV1ZDugKfoBa8KYwkgee5ZnCuCRDfCGlFlM7Gb4ye5CQD-xMXxqWI7vyMbEttHTmCea_TQTXrFip0-YM4PUs38I9L36GmDIeHZ4T6v1_d369k_9-PT74fbmsfaq66b6GcoOoQsBbN-AVohaStNy3gBwC0aiBeWlB-1baQzIrjW9CqIT1oJ4VqfVxb5tMRNd9nFC_-LHlIpxJyXXWqq2UD_21I7G1xnz5LYxexwGSDjO2VklRKdaIwrZ7sllvUwY3I7iFujNCe6W-N3GHeJ3S_yOG1fiL7rLwwTIHoZAkHzMn2KpGqGFVoX7teewZPI3Ii2eMZUbRFos92P8z6QPqW-d3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831193571</pqid></control><display><type>article</type><title>Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear</title><source>ScienceDirect Freedom Collection</source><creator>Mordyuk, B.N. ; Silberschmidt, V.V. ; Prokopenko, G.I. ; Nesterenko, Yu.V. ; Iefimov, M.O.</creator><creatorcontrib>Mordyuk, B.N. ; Silberschmidt, V.V. ; Prokopenko, G.I. ; Nesterenko, Yu.V. ; Iefimov, M.O.</creatorcontrib><description>Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 μm and milled (0.3–0.5 μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200–400 nm, while reinforcement with larger particles results in relatively large Al grains (1–2 μm). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti 3Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2010.07.007</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Abrasive wear ; ALUMINIUM ; Aluminum ; ANNEALING ; Applied sciences ; COMPOSITE MATERIALS ; Cross-disciplinary physics: materials science; rheology ; Dispersion hardening metals ; Exact sciences and technology ; GRAIN SIZE ; Intermetallic compounds ; Intermetallics ; LAYERS ; MATERIALS SCIENCE ; MATRIX MATERIALS ; Metals. Metallurgy ; MICROHARDNESS ; Microstructure ; PARTICLE SIZE ; Particle-reinforced composite ; PARTICLES ; Particulate composites ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; PLASTICITY ; Powder metallurgy. Composite materials ; Production techniques ; REINFORCED MATERIALS ; Reinforcement ; SCANNING ELECTRON MICROSCOPY ; SHOT PEENING ; Solidification ; SURFACES ; Titanium ; TRANSMISSION ELECTRON MICROSCOPY ; Ultrasonic impact peening ; WEAR ; WEAR RESISTANCE ; X-RAY DIFFRACTION</subject><ispartof>Materials characterization, 2010-11, Vol.61 (11), p.1126-1134</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3</citedby><cites>FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23416163$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22066235$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mordyuk, B.N.</creatorcontrib><creatorcontrib>Silberschmidt, V.V.</creatorcontrib><creatorcontrib>Prokopenko, G.I.</creatorcontrib><creatorcontrib>Nesterenko, Yu.V.</creatorcontrib><creatorcontrib>Iefimov, M.O.</creatorcontrib><title>Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear</title><title>Materials characterization</title><description>Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 μm and milled (0.3–0.5 μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200–400 nm, while reinforcement with larger particles results in relatively large Al grains (1–2 μm). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti 3Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.</description><subject>Abrasive wear</subject><subject>ALUMINIUM</subject><subject>Aluminum</subject><subject>ANNEALING</subject><subject>Applied sciences</subject><subject>COMPOSITE MATERIALS</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dispersion hardening metals</subject><subject>Exact sciences and technology</subject><subject>GRAIN SIZE</subject><subject>Intermetallic compounds</subject><subject>Intermetallics</subject><subject>LAYERS</subject><subject>MATERIALS SCIENCE</subject><subject>MATRIX MATERIALS</subject><subject>Metals. Metallurgy</subject><subject>MICROHARDNESS</subject><subject>Microstructure</subject><subject>PARTICLE SIZE</subject><subject>Particle-reinforced composite</subject><subject>PARTICLES</subject><subject>Particulate composites</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>PLASTICITY</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>REINFORCED MATERIALS</subject><subject>Reinforcement</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>SHOT PEENING</subject><subject>Solidification</subject><subject>SURFACES</subject><subject>Titanium</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>Ultrasonic impact peening</subject><subject>WEAR</subject><subject>WEAR RESISTANCE</subject><subject>X-RAY DIFFRACTION</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LJDEQxRvZBV3XjyAERPZij_nTnaT3sojoriB4mXso0xXM0JMeK9276Kc3zQxe95Qi_F7Vq1dVdS74SnChrzerLUz-BWglefnjZsW5OapOhDWqboTtvpSaN03dWq6Oq285bzjn2gpzUsV1ZDugKfoBa8KYwkgee5ZnCuCRDfCGlFlM7Gb4ye5CQD-xMXxqWI7vyMbEttHTmCea_TQTXrFip0-YM4PUs38I9L36GmDIeHZ4T6v1_d369k_9-PT74fbmsfaq66b6GcoOoQsBbN-AVohaStNy3gBwC0aiBeWlB-1baQzIrjW9CqIT1oJ4VqfVxb5tMRNd9nFC_-LHlIpxJyXXWqq2UD_21I7G1xnz5LYxexwGSDjO2VklRKdaIwrZ7sllvUwY3I7iFujNCe6W-N3GHeJ3S_yOG1fiL7rLwwTIHoZAkHzMn2KpGqGFVoX7teewZPI3Ii2eMZUbRFos92P8z6QPqW-d3g</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Mordyuk, B.N.</creator><creator>Silberschmidt, V.V.</creator><creator>Prokopenko, G.I.</creator><creator>Nesterenko, Yu.V.</creator><creator>Iefimov, M.O.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20101101</creationdate><title>Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear</title><author>Mordyuk, B.N. ; Silberschmidt, V.V. ; Prokopenko, G.I. ; Nesterenko, Yu.V. ; Iefimov, M.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Abrasive wear</topic><topic>ALUMINIUM</topic><topic>Aluminum</topic><topic>ANNEALING</topic><topic>Applied sciences</topic><topic>COMPOSITE MATERIALS</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dispersion hardening metals</topic><topic>Exact sciences and technology</topic><topic>GRAIN SIZE</topic><topic>Intermetallic compounds</topic><topic>Intermetallics</topic><topic>LAYERS</topic><topic>MATERIALS SCIENCE</topic><topic>MATRIX MATERIALS</topic><topic>Metals. Metallurgy</topic><topic>MICROHARDNESS</topic><topic>Microstructure</topic><topic>PARTICLE SIZE</topic><topic>Particle-reinforced composite</topic><topic>PARTICLES</topic><topic>Particulate composites</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>PLASTICITY</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>REINFORCED MATERIALS</topic><topic>Reinforcement</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>SHOT PEENING</topic><topic>Solidification</topic><topic>SURFACES</topic><topic>Titanium</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>Ultrasonic impact peening</topic><topic>WEAR</topic><topic>WEAR RESISTANCE</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordyuk, B.N.</creatorcontrib><creatorcontrib>Silberschmidt, V.V.</creatorcontrib><creatorcontrib>Prokopenko, G.I.</creatorcontrib><creatorcontrib>Nesterenko, Yu.V.</creatorcontrib><creatorcontrib>Iefimov, M.O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordyuk, B.N.</au><au>Silberschmidt, V.V.</au><au>Prokopenko, G.I.</au><au>Nesterenko, Yu.V.</au><au>Iefimov, M.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear</atitle><jtitle>Materials characterization</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>61</volume><issue>11</issue><spage>1126</spage><epage>1134</epage><pages>1126-1134</pages><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 μm and milled (0.3–0.5 μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200–400 nm, while reinforcement with larger particles results in relatively large Al grains (1–2 μm). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti 3Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2010.07.007</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-5803
ispartof Materials characterization, 2010-11, Vol.61 (11), p.1126-1134
issn 1044-5803
1873-4189
language eng
recordid cdi_osti_scitechconnect_22066235
source ScienceDirect Freedom Collection
subjects Abrasive wear
ALUMINIUM
Aluminum
ANNEALING
Applied sciences
COMPOSITE MATERIALS
Cross-disciplinary physics: materials science
rheology
Dispersion hardening metals
Exact sciences and technology
GRAIN SIZE
Intermetallic compounds
Intermetallics
LAYERS
MATERIALS SCIENCE
MATRIX MATERIALS
Metals. Metallurgy
MICROHARDNESS
Microstructure
PARTICLE SIZE
Particle-reinforced composite
PARTICLES
Particulate composites
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
PLASTICITY
Powder metallurgy. Composite materials
Production techniques
REINFORCED MATERIALS
Reinforcement
SCANNING ELECTRON MICROSCOPY
SHOT PEENING
Solidification
SURFACES
Titanium
TRANSMISSION ELECTRON MICROSCOPY
Ultrasonic impact peening
WEAR
WEAR RESISTANCE
X-RAY DIFFRACTION
title Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ti%20particle-reinforced%20surface%20layers%20in%20Al:%20Effect%20of%20particle%20size%20on%20microstructure,%20hardness%20and%20wear&rft.jtitle=Materials%20characterization&rft.au=Mordyuk,%20B.N.&rft.date=2010-11-01&rft.volume=61&rft.issue=11&rft.spage=1126&rft.epage=1134&rft.pages=1126-1134&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2010.07.007&rft_dat=%3Cproquest_osti_%3E831193571%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=831193571&rft_id=info:pmid/&rfr_iscdi=true