Loading…
Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear
Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20 μm and milled (0.3–0.5 μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti partic...
Saved in:
Published in: | Materials characterization 2010-11, Vol.61 (11), p.1126-1134 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3 |
container_end_page | 1134 |
container_issue | 11 |
container_start_page | 1126 |
container_title | Materials characterization |
container_volume | 61 |
creator | Mordyuk, B.N. Silberschmidt, V.V. Prokopenko, G.I. Nesterenko, Yu.V. Iefimov, M.O. |
description | Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20
μm and milled (0.3–0.5
μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200–400
nm, while reinforcement with larger particles results in relatively large Al grains (1–2
μm). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti
3Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles. |
doi_str_mv | 10.1016/j.matchar.2010.07.007 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22066235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044580310002287</els_id><sourcerecordid>831193571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3</originalsourceid><addsrcrecordid>eNqFkU9LJDEQxRvZBV3XjyAERPZij_nTnaT3sojoriB4mXso0xXM0JMeK9276Kc3zQxe95Qi_F7Vq1dVdS74SnChrzerLUz-BWglefnjZsW5OapOhDWqboTtvpSaN03dWq6Oq285bzjn2gpzUsV1ZDugKfoBa8KYwkgee5ZnCuCRDfCGlFlM7Gb4ye5CQD-xMXxqWI7vyMbEttHTmCea_TQTXrFip0-YM4PUs38I9L36GmDIeHZ4T6v1_d369k_9-PT74fbmsfaq66b6GcoOoQsBbN-AVohaStNy3gBwC0aiBeWlB-1baQzIrjW9CqIT1oJ4VqfVxb5tMRNd9nFC_-LHlIpxJyXXWqq2UD_21I7G1xnz5LYxexwGSDjO2VklRKdaIwrZ7sllvUwY3I7iFujNCe6W-N3GHeJ3S_yOG1fiL7rLwwTIHoZAkHzMn2KpGqGFVoX7teewZPI3Ii2eMZUbRFos92P8z6QPqW-d3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>831193571</pqid></control><display><type>article</type><title>Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear</title><source>ScienceDirect Freedom Collection</source><creator>Mordyuk, B.N. ; Silberschmidt, V.V. ; Prokopenko, G.I. ; Nesterenko, Yu.V. ; Iefimov, M.O.</creator><creatorcontrib>Mordyuk, B.N. ; Silberschmidt, V.V. ; Prokopenko, G.I. ; Nesterenko, Yu.V. ; Iefimov, M.O.</creatorcontrib><description>Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20
μm and milled (0.3–0.5
μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200–400
nm, while reinforcement with larger particles results in relatively large Al grains (1–2
μm). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti
3Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.</description><identifier>ISSN: 1044-5803</identifier><identifier>EISSN: 1873-4189</identifier><identifier>DOI: 10.1016/j.matchar.2010.07.007</identifier><language>eng</language><publisher>New York, NY: Elsevier Inc</publisher><subject>Abrasive wear ; ALUMINIUM ; Aluminum ; ANNEALING ; Applied sciences ; COMPOSITE MATERIALS ; Cross-disciplinary physics: materials science; rheology ; Dispersion hardening metals ; Exact sciences and technology ; GRAIN SIZE ; Intermetallic compounds ; Intermetallics ; LAYERS ; MATERIALS SCIENCE ; MATRIX MATERIALS ; Metals. Metallurgy ; MICROHARDNESS ; Microstructure ; PARTICLE SIZE ; Particle-reinforced composite ; PARTICLES ; Particulate composites ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; PLASTICITY ; Powder metallurgy. Composite materials ; Production techniques ; REINFORCED MATERIALS ; Reinforcement ; SCANNING ELECTRON MICROSCOPY ; SHOT PEENING ; Solidification ; SURFACES ; Titanium ; TRANSMISSION ELECTRON MICROSCOPY ; Ultrasonic impact peening ; WEAR ; WEAR RESISTANCE ; X-RAY DIFFRACTION</subject><ispartof>Materials characterization, 2010-11, Vol.61 (11), p.1126-1134</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3</citedby><cites>FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23416163$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22066235$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mordyuk, B.N.</creatorcontrib><creatorcontrib>Silberschmidt, V.V.</creatorcontrib><creatorcontrib>Prokopenko, G.I.</creatorcontrib><creatorcontrib>Nesterenko, Yu.V.</creatorcontrib><creatorcontrib>Iefimov, M.O.</creatorcontrib><title>Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear</title><title>Materials characterization</title><description>Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20
μm and milled (0.3–0.5
μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200–400
nm, while reinforcement with larger particles results in relatively large Al grains (1–2
μm). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti
3Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.</description><subject>Abrasive wear</subject><subject>ALUMINIUM</subject><subject>Aluminum</subject><subject>ANNEALING</subject><subject>Applied sciences</subject><subject>COMPOSITE MATERIALS</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Dispersion hardening metals</subject><subject>Exact sciences and technology</subject><subject>GRAIN SIZE</subject><subject>Intermetallic compounds</subject><subject>Intermetallics</subject><subject>LAYERS</subject><subject>MATERIALS SCIENCE</subject><subject>MATRIX MATERIALS</subject><subject>Metals. Metallurgy</subject><subject>MICROHARDNESS</subject><subject>Microstructure</subject><subject>PARTICLE SIZE</subject><subject>Particle-reinforced composite</subject><subject>PARTICLES</subject><subject>Particulate composites</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>PLASTICITY</subject><subject>Powder metallurgy. Composite materials</subject><subject>Production techniques</subject><subject>REINFORCED MATERIALS</subject><subject>Reinforcement</subject><subject>SCANNING ELECTRON MICROSCOPY</subject><subject>SHOT PEENING</subject><subject>Solidification</subject><subject>SURFACES</subject><subject>Titanium</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><subject>Ultrasonic impact peening</subject><subject>WEAR</subject><subject>WEAR RESISTANCE</subject><subject>X-RAY DIFFRACTION</subject><issn>1044-5803</issn><issn>1873-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LJDEQxRvZBV3XjyAERPZij_nTnaT3sojoriB4mXso0xXM0JMeK9276Kc3zQxe95Qi_F7Vq1dVdS74SnChrzerLUz-BWglefnjZsW5OapOhDWqboTtvpSaN03dWq6Oq285bzjn2gpzUsV1ZDugKfoBa8KYwkgee5ZnCuCRDfCGlFlM7Gb4ye5CQD-xMXxqWI7vyMbEttHTmCea_TQTXrFip0-YM4PUs38I9L36GmDIeHZ4T6v1_d369k_9-PT74fbmsfaq66b6GcoOoQsBbN-AVohaStNy3gBwC0aiBeWlB-1baQzIrjW9CqIT1oJ4VqfVxb5tMRNd9nFC_-LHlIpxJyXXWqq2UD_21I7G1xnz5LYxexwGSDjO2VklRKdaIwrZ7sllvUwY3I7iFujNCe6W-N3GHeJ3S_yOG1fiL7rLwwTIHoZAkHzMn2KpGqGFVoX7teewZPI3Ii2eMZUbRFos92P8z6QPqW-d3g</recordid><startdate>20101101</startdate><enddate>20101101</enddate><creator>Mordyuk, B.N.</creator><creator>Silberschmidt, V.V.</creator><creator>Prokopenko, G.I.</creator><creator>Nesterenko, Yu.V.</creator><creator>Iefimov, M.O.</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20101101</creationdate><title>Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear</title><author>Mordyuk, B.N. ; Silberschmidt, V.V. ; Prokopenko, G.I. ; Nesterenko, Yu.V. ; Iefimov, M.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Abrasive wear</topic><topic>ALUMINIUM</topic><topic>Aluminum</topic><topic>ANNEALING</topic><topic>Applied sciences</topic><topic>COMPOSITE MATERIALS</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Dispersion hardening metals</topic><topic>Exact sciences and technology</topic><topic>GRAIN SIZE</topic><topic>Intermetallic compounds</topic><topic>Intermetallics</topic><topic>LAYERS</topic><topic>MATERIALS SCIENCE</topic><topic>MATRIX MATERIALS</topic><topic>Metals. Metallurgy</topic><topic>MICROHARDNESS</topic><topic>Microstructure</topic><topic>PARTICLE SIZE</topic><topic>Particle-reinforced composite</topic><topic>PARTICLES</topic><topic>Particulate composites</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>PLASTICITY</topic><topic>Powder metallurgy. Composite materials</topic><topic>Production techniques</topic><topic>REINFORCED MATERIALS</topic><topic>Reinforcement</topic><topic>SCANNING ELECTRON MICROSCOPY</topic><topic>SHOT PEENING</topic><topic>Solidification</topic><topic>SURFACES</topic><topic>Titanium</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><topic>Ultrasonic impact peening</topic><topic>WEAR</topic><topic>WEAR RESISTANCE</topic><topic>X-RAY DIFFRACTION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mordyuk, B.N.</creatorcontrib><creatorcontrib>Silberschmidt, V.V.</creatorcontrib><creatorcontrib>Prokopenko, G.I.</creatorcontrib><creatorcontrib>Nesterenko, Yu.V.</creatorcontrib><creatorcontrib>Iefimov, M.O.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Materials characterization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mordyuk, B.N.</au><au>Silberschmidt, V.V.</au><au>Prokopenko, G.I.</au><au>Nesterenko, Yu.V.</au><au>Iefimov, M.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear</atitle><jtitle>Materials characterization</jtitle><date>2010-11-01</date><risdate>2010</risdate><volume>61</volume><issue>11</issue><spage>1126</spage><epage>1134</epage><pages>1126-1134</pages><issn>1044-5803</issn><eissn>1873-4189</eissn><abstract>Two types of Ti particles are used in an ultrasonic impact peening (UIP) process to modify sub-surface layers of cp aluminium atomized, with an average size of approx. 20
μm and milled (0.3–0.5
μm). They are introduced into a zone of severe plastic deformation induced by UIP. The effect of Ti particles of different sizes on microstructure, phase composition, microhardness and wear resistance of sub-surface composite layers in aluminium is studied in this paper. The formed layers of a composite reinforced with smaller particles have a highly misoriented fine-grain microstructure of its matrix with a mean grain size of 200–400
nm, while reinforcement with larger particles results in relatively large Al grains (1–2
μm). XRD, SEM, EDX and TEM studies confirm significantly higher particle/matrix bonding in the former case due to formation of a Ti
3Al interlayer around Ti particles with rough surface caused by milling. Different microstructures determine hardness and wear resistance of reinforced aluminium layers: while higher magnitudes of microhardness are observed for both composites (when compared with those of annealed and UIP-treated aluminium), the wear resistance is improved only in the case of reinforcement with small particles.</abstract><cop>New York, NY</cop><pub>Elsevier Inc</pub><doi>10.1016/j.matchar.2010.07.007</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-5803 |
ispartof | Materials characterization, 2010-11, Vol.61 (11), p.1126-1134 |
issn | 1044-5803 1873-4189 |
language | eng |
recordid | cdi_osti_scitechconnect_22066235 |
source | ScienceDirect Freedom Collection |
subjects | Abrasive wear ALUMINIUM Aluminum ANNEALING Applied sciences COMPOSITE MATERIALS Cross-disciplinary physics: materials science rheology Dispersion hardening metals Exact sciences and technology GRAIN SIZE Intermetallic compounds Intermetallics LAYERS MATERIALS SCIENCE MATRIX MATERIALS Metals. Metallurgy MICROHARDNESS Microstructure PARTICLE SIZE Particle-reinforced composite PARTICLES Particulate composites Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics PLASTICITY Powder metallurgy. Composite materials Production techniques REINFORCED MATERIALS Reinforcement SCANNING ELECTRON MICROSCOPY SHOT PEENING Solidification SURFACES Titanium TRANSMISSION ELECTRON MICROSCOPY Ultrasonic impact peening WEAR WEAR RESISTANCE X-RAY DIFFRACTION |
title | Ti particle-reinforced surface layers in Al: Effect of particle size on microstructure, hardness and wear |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A40%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ti%20particle-reinforced%20surface%20layers%20in%20Al:%20Effect%20of%20particle%20size%20on%20microstructure,%20hardness%20and%20wear&rft.jtitle=Materials%20characterization&rft.au=Mordyuk,%20B.N.&rft.date=2010-11-01&rft.volume=61&rft.issue=11&rft.spage=1126&rft.epage=1134&rft.pages=1126-1134&rft.issn=1044-5803&rft.eissn=1873-4189&rft_id=info:doi/10.1016/j.matchar.2010.07.007&rft_dat=%3Cproquest_osti_%3E831193571%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c399t-ba010f9ffa8d4a63ee62275004aa08a72e8a3c2ca6c5277a2957d3f19188a1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=831193571&rft_id=info:pmid/&rfr_iscdi=true |