Loading…
Enhancement of K{sub {alpha}} emission through efficient hot electron generation in carbon nanotubes on intense laser pulse irradiation
Near complete absorption of the energy of intense ultra-short laser pulses (45 fs, intensity {approx}1.6 Multiplication-Sign 10{sup 16} to 2.5 Multiplication-Sign 10{sup 17} W/cm{sup 2}) is observed in carbon nanotubes deposited on a planar molybdenum substrate. The hollow structure of the nanotube...
Saved in:
Published in: | Journal of applied physics 2012-09, Vol.112 (5) |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Near complete absorption of the energy of intense ultra-short laser pulses (45 fs, intensity {approx}1.6 Multiplication-Sign 10{sup 16} to 2.5 Multiplication-Sign 10{sup 17} W/cm{sup 2}) is observed in carbon nanotubes deposited on a planar molybdenum substrate. The hollow structure of the nanotube plasma facilitates resonant electric field enhancement during its ionization phase. This resonantly enhanced localized field at a density much larger than the critical density n{sub c} leads to efficient hot electron generation, which results in enhanced K{sub {alpha}} emission of Mo at 17.5 keV. It is observed that for nanotubes, depending on the degree of hollowness, there is an optimum laser intensity for maximum x-ray enhancement compared to a planar uncoated target. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4749575 |