Loading…

Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires

InAs nanowires with Al{sub x}In{sub 1-x}P or Al{sub x}In{sub 1-x}As shells were grown on GaAs substrates by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. Core diameters and shell thicknesses were measured by transmission electron microscopy (TEM). These me...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2012-12, Vol.112 (12)
Main Authors: Haapamaki, C. M., LaPierre, R. R., Baugh, J.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 12
container_start_page
container_title Journal of applied physics
container_volume 112
creator Haapamaki, C. M.
LaPierre, R. R.
Baugh, J.
description InAs nanowires with Al{sub x}In{sub 1-x}P or Al{sub x}In{sub 1-x}As shells were grown on GaAs substrates by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. Core diameters and shell thicknesses were measured by transmission electron microscopy (TEM). These measurements were then related to selected area diffraction patterns to verify either interface coherency or relaxation through misfit dislocations. A theoretical strain model is presented to determine the critical shell thickness for given core diameters. Zincblende stiffness parameters are transformed to their wurtzite counterparts via a well known tensor transformation. An energy criterion is then given to determine the shell thickness, at which coherency is lost and dislocations become favourable. Our model only considers axial strain relieved by edge dislocations since they were the only type of dislocation observed directly by TEM.
doi_str_mv 10.1063/1.4769735
format article
fullrecord <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22089661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22089661</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_220896613</originalsourceid><addsrcrecordid>eNqNjrsKwjAYRoMoWC-DbxBw0SGav7WXjKUoduvgLjVEGg0J9I8oSN9dUR_A6TvDOfARMgO-Ap5Ea1ht0kSkUdwjAfBMsDSOeZ8EnIfAMpGKIRkhXjgHyCIRkKpotdeyNhQbZQz1jZZXqxDp2bW0tDmy3DzxdqKPrrQfAPboclxUSypdq9i3s7V1d90qnJDBuTaopr8dk_lueyj2zKHXR5TaK9lIZ62S_hiG74tJAtF_1gsoQEOK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Haapamaki, C. M. ; LaPierre, R. R. ; Baugh, J.</creator><creatorcontrib>Haapamaki, C. M. ; LaPierre, R. R. ; Baugh, J.</creatorcontrib><description>InAs nanowires with Al{sub x}In{sub 1-x}P or Al{sub x}In{sub 1-x}As shells were grown on GaAs substrates by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. Core diameters and shell thicknesses were measured by transmission electron microscopy (TEM). These measurements were then related to selected area diffraction patterns to verify either interface coherency or relaxation through misfit dislocations. A theoretical strain model is presented to determine the critical shell thickness for given core diameters. Zincblende stiffness parameters are transformed to their wurtzite counterparts via a well known tensor transformation. An energy criterion is then given to determine the shell thickness, at which coherency is lost and dislocations become favourable. Our model only considers axial strain relieved by edge dislocations since they were the only type of dislocation observed directly by TEM.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4769735</identifier><language>eng</language><publisher>United States</publisher><subject>ALUMINIUM COMPOUNDS ; EDGE DISLOCATIONS ; ELECTRON DIFFRACTION ; FLEXIBILITY ; GALLIUM ARSENIDES ; INDIUM ARSENIDES ; INTERFACES ; LAYERS ; MOLECULAR BEAM EPITAXY ; NANOSCIENCE AND NANOTECHNOLOGY ; QUANTUM WIRES ; RELAXATION ; SEMICONDUCTOR MATERIALS ; SOLIDS ; STRAINS ; SUBSTRATES ; THICKNESS ; TRANSFORMATIONS ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>Journal of applied physics, 2012-12, Vol.112 (12)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22089661$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Haapamaki, C. M.</creatorcontrib><creatorcontrib>LaPierre, R. R.</creatorcontrib><creatorcontrib>Baugh, J.</creatorcontrib><title>Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires</title><title>Journal of applied physics</title><description>InAs nanowires with Al{sub x}In{sub 1-x}P or Al{sub x}In{sub 1-x}As shells were grown on GaAs substrates by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. Core diameters and shell thicknesses were measured by transmission electron microscopy (TEM). These measurements were then related to selected area diffraction patterns to verify either interface coherency or relaxation through misfit dislocations. A theoretical strain model is presented to determine the critical shell thickness for given core diameters. Zincblende stiffness parameters are transformed to their wurtzite counterparts via a well known tensor transformation. An energy criterion is then given to determine the shell thickness, at which coherency is lost and dislocations become favourable. Our model only considers axial strain relieved by edge dislocations since they were the only type of dislocation observed directly by TEM.</description><subject>ALUMINIUM COMPOUNDS</subject><subject>EDGE DISLOCATIONS</subject><subject>ELECTRON DIFFRACTION</subject><subject>FLEXIBILITY</subject><subject>GALLIUM ARSENIDES</subject><subject>INDIUM ARSENIDES</subject><subject>INTERFACES</subject><subject>LAYERS</subject><subject>MOLECULAR BEAM EPITAXY</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>QUANTUM WIRES</subject><subject>RELAXATION</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SOLIDS</subject><subject>STRAINS</subject><subject>SUBSTRATES</subject><subject>THICKNESS</subject><subject>TRANSFORMATIONS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNjrsKwjAYRoMoWC-DbxBw0SGav7WXjKUoduvgLjVEGg0J9I8oSN9dUR_A6TvDOfARMgO-Ap5Ea1ht0kSkUdwjAfBMsDSOeZ8EnIfAMpGKIRkhXjgHyCIRkKpotdeyNhQbZQz1jZZXqxDp2bW0tDmy3DzxdqKPrrQfAPboclxUSypdq9i3s7V1d90qnJDBuTaopr8dk_lueyj2zKHXR5TaK9lIZ62S_hiG74tJAtF_1gsoQEOK</recordid><startdate>20121215</startdate><enddate>20121215</enddate><creator>Haapamaki, C. M.</creator><creator>LaPierre, R. R.</creator><creator>Baugh, J.</creator><scope>OTOTI</scope></search><sort><creationdate>20121215</creationdate><title>Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires</title><author>Haapamaki, C. M. ; LaPierre, R. R. ; Baugh, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_220896613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ALUMINIUM COMPOUNDS</topic><topic>EDGE DISLOCATIONS</topic><topic>ELECTRON DIFFRACTION</topic><topic>FLEXIBILITY</topic><topic>GALLIUM ARSENIDES</topic><topic>INDIUM ARSENIDES</topic><topic>INTERFACES</topic><topic>LAYERS</topic><topic>MOLECULAR BEAM EPITAXY</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>QUANTUM WIRES</topic><topic>RELAXATION</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SOLIDS</topic><topic>STRAINS</topic><topic>SUBSTRATES</topic><topic>THICKNESS</topic><topic>TRANSFORMATIONS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haapamaki, C. M.</creatorcontrib><creatorcontrib>LaPierre, R. R.</creatorcontrib><creatorcontrib>Baugh, J.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haapamaki, C. M.</au><au>LaPierre, R. R.</au><au>Baugh, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires</atitle><jtitle>Journal of applied physics</jtitle><date>2012-12-15</date><risdate>2012</risdate><volume>112</volume><issue>12</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>InAs nanowires with Al{sub x}In{sub 1-x}P or Al{sub x}In{sub 1-x}As shells were grown on GaAs substrates by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. Core diameters and shell thicknesses were measured by transmission electron microscopy (TEM). These measurements were then related to selected area diffraction patterns to verify either interface coherency or relaxation through misfit dislocations. A theoretical strain model is presented to determine the critical shell thickness for given core diameters. Zincblende stiffness parameters are transformed to their wurtzite counterparts via a well known tensor transformation. An energy criterion is then given to determine the shell thickness, at which coherency is lost and dislocations become favourable. Our model only considers axial strain relieved by edge dislocations since they were the only type of dislocation observed directly by TEM.</abstract><cop>United States</cop><doi>10.1063/1.4769735</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2012-12, Vol.112 (12)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_22089661
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)
subjects ALUMINIUM COMPOUNDS
EDGE DISLOCATIONS
ELECTRON DIFFRACTION
FLEXIBILITY
GALLIUM ARSENIDES
INDIUM ARSENIDES
INTERFACES
LAYERS
MOLECULAR BEAM EPITAXY
NANOSCIENCE AND NANOTECHNOLOGY
QUANTUM WIRES
RELAXATION
SEMICONDUCTOR MATERIALS
SOLIDS
STRAINS
SUBSTRATES
THICKNESS
TRANSFORMATIONS
TRANSMISSION ELECTRON MICROSCOPY
title Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20shell%20thickness%20for%20InAs-Al%7Bsub%20x%7DIn%7Bsub%201-x%7DAs(P)%20core-shell%20nanowires&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Haapamaki,%20C.%20M.&rft.date=2012-12-15&rft.volume=112&rft.issue=12&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4769735&rft_dat=%3Costi%3E22089661%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_220896613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true