Loading…
Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires
InAs nanowires with Al{sub x}In{sub 1-x}P or Al{sub x}In{sub 1-x}As shells were grown on GaAs substrates by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. Core diameters and shell thicknesses were measured by transmission electron microscopy (TEM). These me...
Saved in:
Published in: | Journal of applied physics 2012-12, Vol.112 (12) |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 12 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 112 |
creator | Haapamaki, C. M. LaPierre, R. R. Baugh, J. |
description | InAs nanowires with Al{sub x}In{sub 1-x}P or Al{sub x}In{sub 1-x}As shells were grown on GaAs substrates by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. Core diameters and shell thicknesses were measured by transmission electron microscopy (TEM). These measurements were then related to selected area diffraction patterns to verify either interface coherency or relaxation through misfit dislocations. A theoretical strain model is presented to determine the critical shell thickness for given core diameters. Zincblende stiffness parameters are transformed to their wurtzite counterparts via a well known tensor transformation. An energy criterion is then given to determine the shell thickness, at which coherency is lost and dislocations become favourable. Our model only considers axial strain relieved by edge dislocations since they were the only type of dislocation observed directly by TEM. |
doi_str_mv | 10.1063/1.4769735 |
format | article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_22089661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>22089661</sourcerecordid><originalsourceid>FETCH-osti_scitechconnect_220896613</originalsourceid><addsrcrecordid>eNqNjrsKwjAYRoMoWC-DbxBw0SGav7WXjKUoduvgLjVEGg0J9I8oSN9dUR_A6TvDOfARMgO-Ap5Ea1ht0kSkUdwjAfBMsDSOeZ8EnIfAMpGKIRkhXjgHyCIRkKpotdeyNhQbZQz1jZZXqxDp2bW0tDmy3DzxdqKPrrQfAPboclxUSypdq9i3s7V1d90qnJDBuTaopr8dk_lueyj2zKHXR5TaK9lIZ62S_hiG74tJAtF_1gsoQEOK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Haapamaki, C. M. ; LaPierre, R. R. ; Baugh, J.</creator><creatorcontrib>Haapamaki, C. M. ; LaPierre, R. R. ; Baugh, J.</creatorcontrib><description>InAs nanowires with Al{sub x}In{sub 1-x}P or Al{sub x}In{sub 1-x}As shells were grown on GaAs substrates by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. Core diameters and shell thicknesses were measured by transmission electron microscopy (TEM). These measurements were then related to selected area diffraction patterns to verify either interface coherency or relaxation through misfit dislocations. A theoretical strain model is presented to determine the critical shell thickness for given core diameters. Zincblende stiffness parameters are transformed to their wurtzite counterparts via a well known tensor transformation. An energy criterion is then given to determine the shell thickness, at which coherency is lost and dislocations become favourable. Our model only considers axial strain relieved by edge dislocations since they were the only type of dislocation observed directly by TEM.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4769735</identifier><language>eng</language><publisher>United States</publisher><subject>ALUMINIUM COMPOUNDS ; EDGE DISLOCATIONS ; ELECTRON DIFFRACTION ; FLEXIBILITY ; GALLIUM ARSENIDES ; INDIUM ARSENIDES ; INTERFACES ; LAYERS ; MOLECULAR BEAM EPITAXY ; NANOSCIENCE AND NANOTECHNOLOGY ; QUANTUM WIRES ; RELAXATION ; SEMICONDUCTOR MATERIALS ; SOLIDS ; STRAINS ; SUBSTRATES ; THICKNESS ; TRANSFORMATIONS ; TRANSMISSION ELECTRON MICROSCOPY</subject><ispartof>Journal of applied physics, 2012-12, Vol.112 (12)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22089661$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Haapamaki, C. M.</creatorcontrib><creatorcontrib>LaPierre, R. R.</creatorcontrib><creatorcontrib>Baugh, J.</creatorcontrib><title>Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires</title><title>Journal of applied physics</title><description>InAs nanowires with Al{sub x}In{sub 1-x}P or Al{sub x}In{sub 1-x}As shells were grown on GaAs substrates by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. Core diameters and shell thicknesses were measured by transmission electron microscopy (TEM). These measurements were then related to selected area diffraction patterns to verify either interface coherency or relaxation through misfit dislocations. A theoretical strain model is presented to determine the critical shell thickness for given core diameters. Zincblende stiffness parameters are transformed to their wurtzite counterparts via a well known tensor transformation. An energy criterion is then given to determine the shell thickness, at which coherency is lost and dislocations become favourable. Our model only considers axial strain relieved by edge dislocations since they were the only type of dislocation observed directly by TEM.</description><subject>ALUMINIUM COMPOUNDS</subject><subject>EDGE DISLOCATIONS</subject><subject>ELECTRON DIFFRACTION</subject><subject>FLEXIBILITY</subject><subject>GALLIUM ARSENIDES</subject><subject>INDIUM ARSENIDES</subject><subject>INTERFACES</subject><subject>LAYERS</subject><subject>MOLECULAR BEAM EPITAXY</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>QUANTUM WIRES</subject><subject>RELAXATION</subject><subject>SEMICONDUCTOR MATERIALS</subject><subject>SOLIDS</subject><subject>STRAINS</subject><subject>SUBSTRATES</subject><subject>THICKNESS</subject><subject>TRANSFORMATIONS</subject><subject>TRANSMISSION ELECTRON MICROSCOPY</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNjrsKwjAYRoMoWC-DbxBw0SGav7WXjKUoduvgLjVEGg0J9I8oSN9dUR_A6TvDOfARMgO-Ap5Ea1ht0kSkUdwjAfBMsDSOeZ8EnIfAMpGKIRkhXjgHyCIRkKpotdeyNhQbZQz1jZZXqxDp2bW0tDmy3DzxdqKPrrQfAPboclxUSypdq9i3s7V1d90qnJDBuTaopr8dk_lueyj2zKHXR5TaK9lIZ62S_hiG74tJAtF_1gsoQEOK</recordid><startdate>20121215</startdate><enddate>20121215</enddate><creator>Haapamaki, C. M.</creator><creator>LaPierre, R. R.</creator><creator>Baugh, J.</creator><scope>OTOTI</scope></search><sort><creationdate>20121215</creationdate><title>Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires</title><author>Haapamaki, C. M. ; LaPierre, R. R. ; Baugh, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-osti_scitechconnect_220896613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>ALUMINIUM COMPOUNDS</topic><topic>EDGE DISLOCATIONS</topic><topic>ELECTRON DIFFRACTION</topic><topic>FLEXIBILITY</topic><topic>GALLIUM ARSENIDES</topic><topic>INDIUM ARSENIDES</topic><topic>INTERFACES</topic><topic>LAYERS</topic><topic>MOLECULAR BEAM EPITAXY</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>QUANTUM WIRES</topic><topic>RELAXATION</topic><topic>SEMICONDUCTOR MATERIALS</topic><topic>SOLIDS</topic><topic>STRAINS</topic><topic>SUBSTRATES</topic><topic>THICKNESS</topic><topic>TRANSFORMATIONS</topic><topic>TRANSMISSION ELECTRON MICROSCOPY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haapamaki, C. M.</creatorcontrib><creatorcontrib>LaPierre, R. R.</creatorcontrib><creatorcontrib>Baugh, J.</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haapamaki, C. M.</au><au>LaPierre, R. R.</au><au>Baugh, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires</atitle><jtitle>Journal of applied physics</jtitle><date>2012-12-15</date><risdate>2012</risdate><volume>112</volume><issue>12</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>InAs nanowires with Al{sub x}In{sub 1-x}P or Al{sub x}In{sub 1-x}As shells were grown on GaAs substrates by the Au-assisted vapour-liquid-solid method in a gas source molecular beam epitaxy system. Core diameters and shell thicknesses were measured by transmission electron microscopy (TEM). These measurements were then related to selected area diffraction patterns to verify either interface coherency or relaxation through misfit dislocations. A theoretical strain model is presented to determine the critical shell thickness for given core diameters. Zincblende stiffness parameters are transformed to their wurtzite counterparts via a well known tensor transformation. An energy criterion is then given to determine the shell thickness, at which coherency is lost and dislocations become favourable. Our model only considers axial strain relieved by edge dislocations since they were the only type of dislocation observed directly by TEM.</abstract><cop>United States</cop><doi>10.1063/1.4769735</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2012-12, Vol.112 (12) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_osti_scitechconnect_22089661 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | ALUMINIUM COMPOUNDS EDGE DISLOCATIONS ELECTRON DIFFRACTION FLEXIBILITY GALLIUM ARSENIDES INDIUM ARSENIDES INTERFACES LAYERS MOLECULAR BEAM EPITAXY NANOSCIENCE AND NANOTECHNOLOGY QUANTUM WIRES RELAXATION SEMICONDUCTOR MATERIALS SOLIDS STRAINS SUBSTRATES THICKNESS TRANSFORMATIONS TRANSMISSION ELECTRON MICROSCOPY |
title | Critical shell thickness for InAs-Al{sub x}In{sub 1-x}As(P) core-shell nanowires |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20shell%20thickness%20for%20InAs-Al%7Bsub%20x%7DIn%7Bsub%201-x%7DAs(P)%20core-shell%20nanowires&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Haapamaki,%20C.%20M.&rft.date=2012-12-15&rft.volume=112&rft.issue=12&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4769735&rft_dat=%3Costi%3E22089661%3C/osti%3E%3Cgrp_id%3Ecdi_FETCH-osti_scitechconnect_220896613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |