Loading…

A novel apparatus for in situ compression of submicron structures and particles in a high resolution SEM

We report on the development and characterization of a novel in situ manipulation device to perform stressing experiments on the submicron scale inside a high resolution field emission scanning electron microscope. The instrument comprises two main assembly groups: an upper part for positioning and...

Full description

Saved in:
Bibliographic Details
Published in:Review of scientific instruments 2012-09, Vol.83 (9), p.095105-095105
Main Authors: Romeis, S, Paul, J, Ziener, M, Peukert, W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on the development and characterization of a novel in situ manipulation device to perform stressing experiments on the submicron scale inside a high resolution field emission scanning electron microscope. The instrument comprises two main assembly groups: an upper part for positioning and moving a mounted probe and a force sensor as well as a specimen support as lower part. The upper part consists of a closed loop tripod piezoelectric scanner mounted on a self-locking coarse positioning stage. Two interlocked steel springs and a linear variable differential transformer measuring the springs' deflections compose the lower part of the instrument. This arrangement acts as force-sensor and sample support. In comparison to already well-established concepts a wide measuring range is covered by adjusting the spring constant between 30 N/m and 50000 N/m. Moreover, the new device offers striking advantages with respect to force calibration and sample deformation measurements. Force calibration is performed using the eigenfrequency of the force detection system directly inside the SEM. Deformation data are obtained with high accuracy by simultaneously recording displacements above and below the specimen. The detrimental apparatus compliance is determined, and the influence on measured data subsequently minimized: an easy to validate two-springs-in-series model is used for data correction. A force resolution in normal direction of 100 nN accompanied by a sample deformation resolution of 5 nm can be achieved with the instrument using an appropriate load cell stiffness. The capabilities and versatility of this instrument are exemplified by compression experiments performed on submicron amorphous silica particles.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4749256