Loading…

Decoherence and the nature of system-environment correlations

We investigate system-environment correlations based on the exact dynamics of a qubit and its environment in the framework of pure decoherence (phase damping). We focus on the relation of decoherence and the buildup of system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit sta...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2011-12, Vol.84 (6), Article 062121
Main Authors: Pernice, A., Strunz, W. T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate system-environment correlations based on the exact dynamics of a qubit and its environment in the framework of pure decoherence (phase damping). We focus on the relation of decoherence and the buildup of system-reservoir entanglement for an arbitrary (possibly mixed) initial qubit state. In the commonly employed regime where the qubit dynamics can be described by a Markov master equation of the Lindblad type, we find that for almost all qubit initial states inside the Bloch sphere, decoherence is complete while the total state is still separable--no entanglement is involved. In general, both ''separable'' and ''entangling'' decoherence occurs, depending on the temperature and initial qubit state. Moreover, we find situations where classical and quantum correlations periodically alternate as a function of time in the regime of low temperatures.
ISSN:1050-2947
1094-1622
DOI:10.1103/PhysRevA.84.062121