Loading…
Creation of a vortex in a Bose-Einstein condensate by superradiant scattering
The creation of a topological vortex by a superradiant scattering of a Laguerre-Gaussian (LG) beam off an atomic Bose-Einstein condensate (BEC) is theoretically investigated. It is shown that scattered superradiant radiation can be either in a Gaussian mode without angular momentum or in a LG mode w...
Saved in:
Published in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2011-12, Vol.84 (6), Article 063628 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The creation of a topological vortex by a superradiant scattering of a Laguerre-Gaussian (LG) beam off an atomic Bose-Einstein condensate (BEC) is theoretically investigated. It is shown that scattered superradiant radiation can be either in a Gaussian mode without angular momentum or in a LG mode with angular momentum. The conditions leading to these two qualitatively distinct regimes of superradiance are determined in terms of the width for the pump laser and the condensate size for the limiting cases where the recoil energy is both much smaller and larger than the atomic interaction energy. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.84.063628 |