Loading…
High-sensitivity three-mode optomechanical transducer
Three-mode optomechanical interactions have been predicted to allow the creation of very high sensitivity transducers in which very strong optical self-cooling and strong optomechanical quantum entanglement are predicted. Strong coupling is achieved by engineering a transducer in which both the pump...
Saved in:
Published in: | Physical review. A, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2011-12, Vol.84 (6), Article 063836 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Three-mode optomechanical interactions have been predicted to allow the creation of very high sensitivity transducers in which very strong optical self-cooling and strong optomechanical quantum entanglement are predicted. Strong coupling is achieved by engineering a transducer in which both the pump laser and a single signal sideband frequency are resonantly enhanced. Here we demonstrate that very high sensitivity can be achieved in a very simple system consisting of a Fabry-Perot cavity with CO{sub 2} laser thermal tuning. We demonstrate a displacement sensitivity of {approx}1x10{sup -17} m/{radical}(Hz), which is sufficient to observe a thermally excited acoustic mode in a 5.6 kg sapphire mirror with a signal-to-noise ratio of more than 20 dB. It is shown that a measurement sensitivity of {approx}2x10{sup -20} m/{radical}(Hz) limited by the quantum shot noise is achievable with optimization of the cavity parameters. |
---|---|
ISSN: | 1050-2947 1094-1622 |
DOI: | 10.1103/PhysRevA.84.063836 |