Loading…
A new scheme to accumulate positrons in a Penning-Malmberg trap with a linac-based positron pulsed source
The Gravitational Behaviour of Antimatter at Rest experiment (GBAR) is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration of anti-hydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high densit...
Saved in:
Main Author: | |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Gravitational Behaviour of Antimatter at Rest experiment (GBAR) is designed to perform a direct measurement of the weak equivalence principle on antimatter by measuring the acceleration of anti-hydrogen atoms in the gravitational field of the Earth. The experimental scheme requires a high density positronium (Ps) cloud as a target for antiprotons, provided by the Antiproton Decelerator (AD) - Extra Low Energy Antiproton Ring (ELENA) facility at CERN. The Ps target will be produced by a pulse of few 10{sup 10} positrons injected onto a positron-positronium converter. For this purpose, a slow positron source using an electron Linac has been constructed at Saclay. The present flux is comparable with that of {sup 22}Na-based sources using solid neon moderator. A new positron accumulation scheme with a Penning-Malmberg trap has been proposed taking advantage of the pulsed time structure of the beam. In the trap, the positrons are cooled by interaction with a dense electron plasma. The overall trapping efficiency has been estimated to be {approx}70% by numerical simulations. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/1.4796067 |