Loading…
DYNAMICAL EVIDENCE FOR A MAGNETOCENTRIFUGAL WIND FROM A 20 M ☉ BINARY YOUNG STELLAR OBJECT
In Orion BN/KL, proper motions of {lambda}7 mm vibrationally excited SiO masers trace the rotation of a nearly edge-on disk and a bipolar wide-angle outflow 10-100 AU from radio source I, a binary young stellar object of {approx}20 M{sub Sun }. Here we map ground-state {lambda}7 mm SiO emission with...
Saved in:
Published in: | Astrophysical journal. Letters 2013-06, Vol.770 (2), p.L32 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In Orion BN/KL, proper motions of {lambda}7 mm vibrationally excited SiO masers trace the rotation of a nearly edge-on disk and a bipolar wide-angle outflow 10-100 AU from radio source I, a binary young stellar object of {approx}20 M{sub Sun }. Here we map ground-state {lambda}7 mm SiO emission with the Very Large Array and track proper motions over 9 yr. The innermost and strongest emission lies in two extended arcs bracketing Source I. The proper motions trace a northeast-southwest bipolar outflow 100-1000 AU from Source I with a median three-dimensional motion of {approx}18 km s{sup -1}. An overlying distribution of {lambda}1.3 cm H{sub 2}O masers betrays similar flow characteristics. Gas dynamics and emission morphology traced by the masers suggest the presence of a magnetocentrifugal disk wind. Reinforcing evidence lies in the colinearity of the flow, apparent rotation across the flow parallel to the disk rotation, and recollimation that narrows the flow opening angle {approx}120 AU downstream. The arcs of ground-state SiO emission may mark the transition point to a shocked super-Alfvenic outflow. |
---|---|
ISSN: | 2041-8205 2041-8213 |
DOI: | 10.1088/2041-8205/770/2/L32 |