Loading…
Group velocity dispersion and relativistic effects on the wakefield induced by chirped laser pulse in parabolic plasma channel
The excitation of wake field plasma waves by a short laser pulse propagating through a parabolic plasma channel is studied. The laser pulse is assumed to be initially chirped. In this regard, the effects of initial and induced chirp on the plasma wake field as well as the laser pulse parameters are...
Saved in:
Published in: | Physics of plasmas 2013-04, Vol.20 (4) |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The excitation of wake field plasma waves by a short laser pulse propagating through a parabolic plasma channel is studied. The laser pulse is assumed to be initially chirped. In this regard, the effects of initial and induced chirp on the plasma wake field as well as the laser pulse parameters are investigated. The group velocity dispersion and nonlinear relativistic effects were taken into account to evaluate the excited wake field in two dimension using source dependent expansion method. Positive, negative, and un-chirped laser pulses were employed in numerical code to evaluate the effectiveness of the initial chirp on 2-D wake field excitation. Numerical results showed that for laser irradiances exceeding 1018W/cm2, an intense laser pulse with initial positive chirp generates larger wake field compared to negatively and un-chirped pulses. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4798530 |