Loading…
Solution of the nonlinear Poisson–Boltzmann equation: Application to ionic diffusion in cementitious materials
A robust numerical solution of the nonlinear Poisson–Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson–Boltzmann equation reveal that the assumptions leading to linearization may not be app...
Saved in:
Published in: | Cement and concrete research 2013-02, Vol.44 (Complete), p.8-17 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A robust numerical solution of the nonlinear Poisson–Boltzmann equation for asymmetric polyelectrolyte solutions in discrete pore geometries is presented. Comparisons to the linearized approximation of the Poisson–Boltzmann equation reveal that the assumptions leading to linearization may not be appropriate for the electrochemical regime in many cementitious materials. Implications of the electric double layer on both partitioning of species and on diffusive release are discussed. The influence of the electric double layer on anion diffusion relative to cation diffusion is examined. |
---|---|
ISSN: | 0008-8846 1873-3948 |
DOI: | 10.1016/j.cemconres.2012.10.013 |