Loading…
Direct observation of charge transfer region at interfaces in graphene devices
Nanoscale spectromicroscopic characterizing technique is indispensable for realization of future high-speed graphene transistors. Highly spatially resolved soft X-ray photoelectron microscopy measurements have been performed using our “3D nano-ESCA” (three-dimensional nanoscale electron spectroscopy...
Saved in:
Published in: | Applied physics letters 2013-06, Vol.102 (24) |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanoscale spectromicroscopic characterizing technique is indispensable for realization of future high-speed graphene transistors. Highly spatially resolved soft X-ray photoelectron microscopy measurements have been performed using our “3D nano-ESCA” (three-dimensional nanoscale electron spectroscopy for chemical analysis) equipment in order to investigate the local electronic states at interfaces in a graphene device structure. We have succeeded in detecting a charge transfer region at the graphene/metal-electrode interface, which extends over ∼500 nm with the energy difference of 60 meV. Moreover, a nondestructive depth profiling reveals the chemical properties of the graphene/SiO2-substrate interface. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4808083 |