Loading…

THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS

We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at peri...

Full description

Saved in:
Bibliographic Details
Published in:The Astrophysical journal 2013-02, Vol.764 (2), p.1-12
Main Authors: Webb, Jeremy J, Harris, William E, Sills, Alison, Hurley, Jarrod R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c388t-2abca2ab45416f22ca09684efd033f925ee75acc4dedfd4ba3cbe3514e6ae97b3
cites cdi_FETCH-LOGICAL-c388t-2abca2ab45416f22ca09684efd033f925ee75acc4dedfd4ba3cbe3514e6ae97b3
container_end_page 12
container_issue 2
container_start_page 1
container_title The Astrophysical journal
container_volume 764
creator Webb, Jeremy J
Harris, William E
Sills, Alison
Hurley, Jarrod R
description We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a cluster recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.
doi_str_mv 10.1088/0004-637X/764/2/124
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22167759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718939575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-2abca2ab45416f22ca09684efd033f925ee75acc4dedfd4ba3cbe3514e6ae97b3</originalsourceid><addsrcrecordid>eNqN0U9PgzAYBvDGaOKcfgIvJF68IP1L4YjIXBMCCesSPTWllIjZxqTs4LcXMuPZS9_0zS_v4XkAuEfwCcEoCiCE1A8Jfwt4SAMcIEwvwAIxEvmUMH4JFn_iGtw49zl_cRwvQCbXmSeKVb7NijTzypVXVs9CJrmXpWlWyEqkQr57ZeFJ8TJtq-RFiJltZFJ5ab7dyKza3IKrVu-cvfudS7BdZTJd-3n5KtIk9w2JotHHujZ6eiijKGwxNhrGYURt20BC2hgzaznTxtDGNm1Da01MbQlD1IbaxrwmS_Bwvtu7sVPOdKM1H6Y_HKwZFcYo5JzFk3o8q-PQf52sG9W-c8budvpg-5NTiKMoJjHj7B8UsilgSPlEyZmaoXdusK06Dt1eD98KQTW3oOZQ1ZyxmlpQWE0tkB95Q3Ni</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1705088047</pqid></control><display><type>article</type><title>THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS</title><source>EZB Electronic Journals Library</source><creator>Webb, Jeremy J ; Harris, William E ; Sills, Alison ; Hurley, Jarrod R</creator><creatorcontrib>Webb, Jeremy J ; Harris, William E ; Sills, Alison ; Hurley, Jarrod R</creatorcontrib><description>We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a cluster recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.1088/0004-637X/764/2/124</identifier><language>eng</language><publisher>United States</publisher><subject>ASTRONOMY ; ASTROPHYSICS ; ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; Clusters ; COMPUTERIZED SIMULATION ; Constraining ; CORRECTIONS ; Eccentricity ; GALAXIES ; MASS ; Mathematical models ; Orbitals ; ORBITS ; POTENTIALS ; RELAXATION TIME ; STAR CLUSTERS ; STARS</subject><ispartof>The Astrophysical journal, 2013-02, Vol.764 (2), p.1-12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-2abca2ab45416f22ca09684efd033f925ee75acc4dedfd4ba3cbe3514e6ae97b3</citedby><cites>FETCH-LOGICAL-c388t-2abca2ab45416f22ca09684efd033f925ee75acc4dedfd4ba3cbe3514e6ae97b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22167759$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Webb, Jeremy J</creatorcontrib><creatorcontrib>Harris, William E</creatorcontrib><creatorcontrib>Sills, Alison</creatorcontrib><creatorcontrib>Hurley, Jarrod R</creatorcontrib><title>THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS</title><title>The Astrophysical journal</title><description>We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a cluster recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.</description><subject>ASTRONOMY</subject><subject>ASTROPHYSICS</subject><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>Clusters</subject><subject>COMPUTERIZED SIMULATION</subject><subject>Constraining</subject><subject>CORRECTIONS</subject><subject>Eccentricity</subject><subject>GALAXIES</subject><subject>MASS</subject><subject>Mathematical models</subject><subject>Orbitals</subject><subject>ORBITS</subject><subject>POTENTIALS</subject><subject>RELAXATION TIME</subject><subject>STAR CLUSTERS</subject><subject>STARS</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqN0U9PgzAYBvDGaOKcfgIvJF68IP1L4YjIXBMCCesSPTWllIjZxqTs4LcXMuPZS9_0zS_v4XkAuEfwCcEoCiCE1A8Jfwt4SAMcIEwvwAIxEvmUMH4JFn_iGtw49zl_cRwvQCbXmSeKVb7NijTzypVXVs9CJrmXpWlWyEqkQr57ZeFJ8TJtq-RFiJltZFJ5ab7dyKza3IKrVu-cvfudS7BdZTJd-3n5KtIk9w2JotHHujZ6eiijKGwxNhrGYURt20BC2hgzaznTxtDGNm1Da01MbQlD1IbaxrwmS_Bwvtu7sVPOdKM1H6Y_HKwZFcYo5JzFk3o8q-PQf52sG9W-c8budvpg-5NTiKMoJjHj7B8UsilgSPlEyZmaoXdusK06Dt1eD98KQTW3oOZQ1ZyxmlpQWE0tkB95Q3Ni</recordid><startdate>20130220</startdate><enddate>20130220</enddate><creator>Webb, Jeremy J</creator><creator>Harris, William E</creator><creator>Sills, Alison</creator><creator>Hurley, Jarrod R</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20130220</creationdate><title>THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS</title><author>Webb, Jeremy J ; Harris, William E ; Sills, Alison ; Hurley, Jarrod R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-2abca2ab45416f22ca09684efd033f925ee75acc4dedfd4ba3cbe3514e6ae97b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>ASTRONOMY</topic><topic>ASTROPHYSICS</topic><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>Clusters</topic><topic>COMPUTERIZED SIMULATION</topic><topic>Constraining</topic><topic>CORRECTIONS</topic><topic>Eccentricity</topic><topic>GALAXIES</topic><topic>MASS</topic><topic>Mathematical models</topic><topic>Orbitals</topic><topic>ORBITS</topic><topic>POTENTIALS</topic><topic>RELAXATION TIME</topic><topic>STAR CLUSTERS</topic><topic>STARS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webb, Jeremy J</creatorcontrib><creatorcontrib>Harris, William E</creatorcontrib><creatorcontrib>Sills, Alison</creatorcontrib><creatorcontrib>Hurley, Jarrod R</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webb, Jeremy J</au><au>Harris, William E</au><au>Sills, Alison</au><au>Hurley, Jarrod R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS</atitle><jtitle>The Astrophysical journal</jtitle><date>2013-02-20</date><risdate>2013</risdate><volume>764</volume><issue>2</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We have performed N-body simulations of star clusters orbiting in a spherically symmetric smooth galactic potential. The model clusters cover a range of initial half-mass radii and orbital eccentricities in order to test the historical assumption that the tidal radius of a cluster is imposed at perigalacticon. The traditional assumption for globular clusters is that since the internal relaxation time is larger than its orbital period, the cluster is tidally stripped at perigalacticon. Instead, our simulations show that a cluster with an eccentric orbit does not need to fully relax in order to expand. After a perigalactic pass, a cluster recaptures previously unbound stars, and the tidal shock at perigalacticon has the effect of energizing inner region stars to larger orbits. Therefore, instead of the limiting radius being imposed at perigalacticon, it more nearly traces the instantaneous tidal radius of the cluster at any point in the orbit. We present a numerical correction factor to theoretical tidal radii calculated at perigalacticon which takes into consideration both the orbital eccentricity and current orbital phase of the cluster.</abstract><cop>United States</cop><doi>10.1088/0004-637X/764/2/124</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2013-02, Vol.764 (2), p.1-12
issn 0004-637X
1538-4357
language eng
recordid cdi_osti_scitechconnect_22167759
source EZB Electronic Journals Library
subjects ASTRONOMY
ASTROPHYSICS
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Clusters
COMPUTERIZED SIMULATION
Constraining
CORRECTIONS
Eccentricity
GALAXIES
MASS
Mathematical models
Orbitals
ORBITS
POTENTIALS
RELAXATION TIME
STAR CLUSTERS
STARS
title THE INFLUENCE OF ORBITAL ECCENTRICITY ON TIDAL RADII OF STAR CLUSTERS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A25%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20INFLUENCE%20OF%20ORBITAL%20ECCENTRICITY%20ON%20TIDAL%20RADII%20OF%20STAR%20CLUSTERS&rft.jtitle=The%20Astrophysical%20journal&rft.au=Webb,%20Jeremy%20J&rft.date=2013-02-20&rft.volume=764&rft.issue=2&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.1088/0004-637X/764/2/124&rft_dat=%3Cproquest_osti_%3E1718939575%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c388t-2abca2ab45416f22ca09684efd033f925ee75acc4dedfd4ba3cbe3514e6ae97b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1705088047&rft_id=info:pmid/&rfr_iscdi=true