Loading…
Antarctic permafrost processes and antiphase dynamics of cold-based glaciers in the McMurdo Dry Valleys inferred from 10 Be and 26 Al cosmogenic nuclides
Soil and sediment mixing and associated permafrost processes are not widely studied or understood in the McMurdo Dry Valleys of Antarctica. In this study, we investigate the stability and depositional history of near-surface permafrost sediments to ∼ 3 m depth in the Pearse and lower Wright valleys...
Saved in:
Published in: | The cryosphere 2023-11, Vol.17 (11), p.4917-4936 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Soil and sediment mixing and associated permafrost processes are not widely studied or understood in the McMurdo Dry Valleys of Antarctica. In this study, we investigate the stability and depositional history of near-surface permafrost sediments to ∼ 3 m depth in the Pearse and lower Wright valleys using measured cosmogenic 10Be and 26Al depth profiles. In Pearse Valley, we estimate a minimum depositional age of ∼ 74 ka for the active layer and paleoactive-layer sediments ( 180 ka. At a coastal, lower-elevation site in neighbouring lower Wright Valley, 10Be and 26Al depth profiles from a second permafrost core exhibit near-constant concentrations with depth and indicate the sediments are either vertically mixed after deposition or sufficiently young so that post-depositional nuclide production is negligible relative to inheritance. 26Al/10Be concentration ratios for both depth profiles range between 4.0 and 5.2 and are all lower than the nominal surface production rate ratio of 6.75, indicating that prior to deposition, these sediments experienced complex, yet similar, exposure–burial histories. Assuming a single-cycle exposure–burial scenario, the observed 26Al/10Be ratios are equivalent to a total minimum exposure–burial history of ∼ 1.2 Myr. In proximity to the depth profile core site, we measured cosmogenic 10Be and 26Al in three granite cobbles from thin, patchy drift (Taylor 2 Drift) in Pearse Valley to constrain the timing of retreat of Taylor Glacier. Assuming simple continuous exposure, our minimum, zero-erosion exposure ages suggest Taylor Glacier partially retreated from Pearse Valley no later than 65–74 ka. The timing of retreat after 65 ka and until the Last Glacial Maximum (LGM) when Taylor Glacier was at a minimum position remains unresolved. The surface cobble ages and permafrost processes reveal Taylor Glacier advances during MIS 5 were non-erosive or mildly erosive, preserving the underlying permafrost sediments and peppering boulders and cobbles upon an older, relict surface. Our results are consistent with U/Th ages from central Taylor Valley and suggest changes in moisture deliver |
---|---|
ISSN: | 1994-0424 1994-0424 |
DOI: | 10.5194/tc-17-4917-2023 |