Loading…

SUMO modification regulates the transcriptional activity of FLASH

FLASH is a huge multifunctional nuclear protein that has been linked to apoptotic signalling, transcriptional control and Cajal body function. To gain further insight into the functions of the FLASH protein, we performed a yeast two-hybrid screening with FLASH as bait and identified the SUMO-conjuga...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2009-09, Vol.387 (3), p.494-499
Main Authors: Alm-Kristiansen, Anne Hege, Norman, Ingrid Louise, Matre, Vilborg, Gabrielsen, Odd Stokke
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:FLASH is a huge multifunctional nuclear protein that has been linked to apoptotic signalling, transcriptional control and Cajal body function. To gain further insight into the functions of the FLASH protein, we performed a yeast two-hybrid screening with FLASH as bait and identified the SUMO-conjugating enzyme Ubc9 as an interaction partner. The main interaction surface for Ubc9 was found in the C-terminal part of FLASH, which is also a target for sumoylation. We identified K1813 as the major sumoylation site in FLASH, being enhanced by the SUMO E3 ligases Pc2 and PIASy. Disruption of this SUMO-conjugation site did not change the speckled subnuclear localization of FLASH, but it caused a reduction in FLASH activity as measured in a Gal4-tethering assay. Interestingly, the SUMO-specific protease SENP1 activated FLASH in the same assay. Overall, our results point to a complex involvement of sumoylation in modulating the function of FLASH.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2009.07.053