Loading…

Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita

[Display omitted] ► Aurelin was overexpressed in Escherichia coli, and its spatial structure was studied by NMR. ► Aurelin compact structure encloses helical regions cross-linked by three disulfide bonds. ► Aurelin shows structural homology to the BgK and ShK toxins of sea anemones. ► Aurelin binds...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2012-12, Vol.429 (1-2), p.63-69
Main Authors: Shenkarev, Zakhar O., Panteleev, Pavel V., Balandin, Sergey V., Gizatullina, Albina K., Altukhov, Dmitry A., Finkina, Ekaterina I., Kokryakov, Vladimir N., Arseniev, Alexander S., Ovchinnikova, Tatiana V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] ► Aurelin was overexpressed in Escherichia coli, and its spatial structure was studied by NMR. ► Aurelin compact structure encloses helical regions cross-linked by three disulfide bonds. ► Aurelin shows structural homology to the BgK and ShK toxins of sea anemones. ► Aurelin binds to the anionic lipid vesicles, but does not interact with zwitterionic ones. ► Aurelin binds to DPC micelle surface with moderate affinity via two helical regions. Aurelin is a 40-residue cationic antimicrobial peptide isolated from the mezoglea of a scyphoid jellyfish Aurelia aurita. Aurelin and its 15N-labeled analogue were overexpressed in Escherichia coli and purified. Antimicrobial activity of the recombinant peptide was examined, and its spatial structure was studied by NMR spectroscopy. Aurelin represents a compact globule, enclosing one 310-helix and two α-helical regions cross-linked by three disulfide bonds. The peptide binds to anionic lipid (POPC/DOPG, 3:1) vesicles even at physiological salt concentration, it does not interact with zwitterionic (POPC) vesicles and interacts with the DPC micelle surface with moderate affinity via two α-helical regions. Although aurelin shows structural homology to the BgK and ShK toxins of sea anemones, its surface does not possess the “functional dyad” required for the high-affinity interaction with the K+-channels. The obtained data permit to correlate the modest antibacterial properties and membrane activity of aurelin.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2012.10.092