Loading…
Electrical and optical characteristics of surface treated ZnO nanotubes
[Display omitted] ► ZnO nanotubes were formed onto an ITO glass and were surface treated. ► Photoluminescence and fluorescence imaging for ZnO nanotubes showed blue emission. ► Surface treated samples that showed green emissions. ► Lifetime measurements showed higher excitonic times in surface treat...
Saved in:
Published in: | Materials research bulletin 2012-08, Vol.47 (8), p.1887-1891 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | [Display omitted]
► ZnO nanotubes were formed onto an ITO glass and were surface treated. ► Photoluminescence and fluorescence imaging for ZnO nanotubes showed blue emission. ► Surface treated samples that showed green emissions. ► Lifetime measurements showed higher excitonic times in surface treated samples. ► Conductance measurements showed significant improvement for the treated samples.
Vertical ZnO nanotubes were electrochemically deposited onto an indium doped tin oxide glass substrate. These nanotubes were surface treated with zinc acetate and annealed at 450°C, resulting in a nanotubes/nanoparticles composite layer. Scanning electron microscopy of the surface treated samples showed nanoparticles been dispersed uniformly along the ZnO tubular matrix, which was confirmed by X-ray diffractrometry. Photoluminescence and fluorescence microscopy showed untreated ZnO nanotubes exhibiting blue emission, while the treated samples exhibited green emissions. Ultra-violet spectroscopy of treated samples revealed lower band gap values compare to their untreated counterparts. Lifetime measurements showed higher excitonic lifetimes in treated samples. Conductance studies using atomic force microscopy showed significant improvement in the conductance values for the treated samples. A significant increase in photocurrent was observed in treated samples when used as photo-anodes in dye sensitized solar cells. |
---|---|
ISSN: | 0025-5408 1873-4227 |
DOI: | 10.1016/j.materresbull.2012.04.034 |