Loading…
High-field critical current enhancement by irradiation induced correlated and random defects in (Ba{sub 0.6}K{sub 0.4})Fe{sub 2}As{sub 2}
Mixed pinning landscapes in superconductors are emerging as an effective strategy to achieve high critical currents in high, applied magnetic fields. Here, we use heavy-ion and proton irradiation to create correlated and point defects to explore the vortex pinning behavior of each and combined const...
Saved in:
Published in: | Applied physics letters 2013-11, Vol.103 (20) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Mixed pinning landscapes in superconductors are emerging as an effective strategy to achieve high critical currents in high, applied magnetic fields. Here, we use heavy-ion and proton irradiation to create correlated and point defects to explore the vortex pinning behavior of each and combined constituent defects in the iron-based superconductor Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2} and find that the pinning mechanisms are non-additive. The major effect of p-irradiation in mixed pinning landscapes is the generation of field-independent critical currents in very high fields. At 7 T ‖ c and 5 K, the critical current density exceeds 5 MA/cm{sup 2}. |
---|---|
ISSN: | 0003-6951 1077-3118 |
DOI: | 10.1063/1.4829524 |