Loading…
Particle-In-Cell simulation of laser photodetachment in capacitively coupled radio frequency oxygen discharges
Particle-In-Cell simulations with Monte Carlo collision of capacitively coupled radio frequency oxygen discharges are used to study the appearance and characteristics of two experimentally observed electronegative modes, the high electronegative mode for low peak-to-peak voltage, and the low electro...
Saved in:
Published in: | Physics of plasmas 2013-11, Vol.20 (11) |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Particle-In-Cell simulations with Monte Carlo collision of capacitively coupled radio frequency oxygen discharges are used to study the appearance and characteristics of two experimentally observed electronegative modes, the high electronegative mode for low peak-to-peak voltage, and the low electronegative mode for high peak-to-peak voltage. For the high electronegative mode, the simulated laser photodetachment signal agrees very well with the experiment. The simulation identifies the dominant transport processes for high electronegativities: electrons flow fast out of the perturbed region, where the laser pulse generates laser detachment of negative ions. Negative ions are not streaming inward, but are produced within this region by dissociative attachment after the laser pulse. |
---|---|
ISSN: | 1070-664X 1089-7674 |
DOI: | 10.1063/1.4831760 |