Loading…
Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics
A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-...
Saved in:
Published in: | The Journal of chemical physics 2013-10, Vol.139 (15), p.151103-151103 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3 |
container_end_page | 151103 |
container_issue | 15 |
container_start_page | 151103 |
container_title | The Journal of chemical physics |
container_volume | 139 |
creator | Huo, Pengfei Miller, 3rd, Thomas F Coker, David F |
description | A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime. |
doi_str_mv | 10.1063/1.4826163 |
format | article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22220398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1446873682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3</originalsourceid><addsrcrecordid>eNo9kU1P5DAMhqPVomUYOPAHUKW9wKEQJ2nackOj_ZKQdg_sOcokLhPUJkOSIsGv3wwzrC-W7MevLb-EnAO9Bir5DVyLjkmQ_BNZAO36upU9_UwWlDKoe0nlMTlJ6YlSCi0TX8gxEyCp6NmCpFWYptk7o7ML_rb6E9E6k90LVlsds9NjNTqPOro3tKWUN5XzGR9jaSQ3zeP7XBWGygRv0acdtdEJKxzR5Fh6OWqfBoyVffV6ciadkqNBjwnPDnlJ_n7_9rD6Wd___vFrdXdfGwEi18yyphHYGyE7NLS1etCNlZYPgnNqqZAADRMWNbI1tIBra2TDbWOxZQw0X5Kve92QslPJuIxmU8705TDFSlDed4W63FPbGJ5nTFlNLhkcR-0xzEmBKPtbLjtW0Ks9amJIKeKgttFNOr4qoGrnhAJ1cKKwFwfZeT2h_U9-vJ7_A6vghJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1446873682</pqid></control><display><type>article</type><title>Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Huo, Pengfei ; Miller, 3rd, Thomas F ; Coker, David F</creator><creatorcontrib>Huo, Pengfei ; Miller, 3rd, Thomas F ; Coker, David F</creatorcontrib><description>A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4826163</identifier><identifier>PMID: 24160492</identifier><language>eng</language><publisher>United States</publisher><subject>CHARGE EXCHANGE ; CORRELATION FUNCTIONS ; ELECTRON TRANSFER ; Electron Transport ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; PATH INTEGRALS ; Quantum Theory ; REACTION KINETICS ; SIMULATION ; Thermodynamics ; Time Factors</subject><ispartof>The Journal of chemical physics, 2013-10, Vol.139 (15), p.151103-151103</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3</citedby><cites>FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,779,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24160492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22220398$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huo, Pengfei</creatorcontrib><creatorcontrib>Miller, 3rd, Thomas F</creatorcontrib><creatorcontrib>Coker, David F</creatorcontrib><title>Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.</description><subject>CHARGE EXCHANGE</subject><subject>CORRELATION FUNCTIONS</subject><subject>ELECTRON TRANSFER</subject><subject>Electron Transport</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>PATH INTEGRALS</subject><subject>Quantum Theory</subject><subject>REACTION KINETICS</subject><subject>SIMULATION</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kU1P5DAMhqPVomUYOPAHUKW9wKEQJ2nackOj_ZKQdg_sOcokLhPUJkOSIsGv3wwzrC-W7MevLb-EnAO9Bir5DVyLjkmQ_BNZAO36upU9_UwWlDKoe0nlMTlJ6YlSCi0TX8gxEyCp6NmCpFWYptk7o7ML_rb6E9E6k90LVlsds9NjNTqPOro3tKWUN5XzGR9jaSQ3zeP7XBWGygRv0acdtdEJKxzR5Fh6OWqfBoyVffV6ciadkqNBjwnPDnlJ_n7_9rD6Wd___vFrdXdfGwEi18yyphHYGyE7NLS1etCNlZYPgnNqqZAADRMWNbI1tIBra2TDbWOxZQw0X5Kve92QslPJuIxmU8705TDFSlDed4W63FPbGJ5nTFlNLhkcR-0xzEmBKPtbLjtW0Ks9amJIKeKgttFNOr4qoGrnhAJ1cKKwFwfZeT2h_U9-vJ7_A6vghJ4</recordid><startdate>20131021</startdate><enddate>20131021</enddate><creator>Huo, Pengfei</creator><creator>Miller, 3rd, Thomas F</creator><creator>Coker, David F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20131021</creationdate><title>Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics</title><author>Huo, Pengfei ; Miller, 3rd, Thomas F ; Coker, David F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CHARGE EXCHANGE</topic><topic>CORRELATION FUNCTIONS</topic><topic>ELECTRON TRANSFER</topic><topic>Electron Transport</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>PATH INTEGRALS</topic><topic>Quantum Theory</topic><topic>REACTION KINETICS</topic><topic>SIMULATION</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Pengfei</creatorcontrib><creatorcontrib>Miller, 3rd, Thomas F</creatorcontrib><creatorcontrib>Coker, David F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Pengfei</au><au>Miller, 3rd, Thomas F</au><au>Coker, David F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-10-21</date><risdate>2013</risdate><volume>139</volume><issue>15</issue><spage>151103</spage><epage>151103</epage><pages>151103-151103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.</abstract><cop>United States</cop><pmid>24160492</pmid><doi>10.1063/1.4826163</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2013-10, Vol.139 (15), p.151103-151103 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_osti_scitechconnect_22220398 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics |
subjects | CHARGE EXCHANGE CORRELATION FUNCTIONS ELECTRON TRANSFER Electron Transport INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY PATH INTEGRALS Quantum Theory REACTION KINETICS SIMULATION Thermodynamics Time Factors |
title | Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication:%20Predictive%20partial%20linearized%20path%20integral%20simulation%20of%20condensed%20phase%20electron%20transfer%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Huo,%20Pengfei&rft.date=2013-10-21&rft.volume=139&rft.issue=15&rft.spage=151103&rft.epage=151103&rft.pages=151103-151103&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4826163&rft_dat=%3Cproquest_osti_%3E1446873682%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1446873682&rft_id=info:pmid/24160492&rfr_iscdi=true |