Loading…

Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics

A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of chemical physics 2013-10, Vol.139 (15), p.151103-151103
Main Authors: Huo, Pengfei, Miller, 3rd, Thomas F, Coker, David F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3
cites cdi_FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3
container_end_page 151103
container_issue 15
container_start_page 151103
container_title The Journal of chemical physics
container_volume 139
creator Huo, Pengfei
Miller, 3rd, Thomas F
Coker, David F
description A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.
doi_str_mv 10.1063/1.4826163
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_22220398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1446873682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3</originalsourceid><addsrcrecordid>eNo9kU1P5DAMhqPVomUYOPAHUKW9wKEQJ2nackOj_ZKQdg_sOcokLhPUJkOSIsGv3wwzrC-W7MevLb-EnAO9Bir5DVyLjkmQ_BNZAO36upU9_UwWlDKoe0nlMTlJ6YlSCi0TX8gxEyCp6NmCpFWYptk7o7ML_rb6E9E6k90LVlsds9NjNTqPOro3tKWUN5XzGR9jaSQ3zeP7XBWGygRv0acdtdEJKxzR5Fh6OWqfBoyVffV6ciadkqNBjwnPDnlJ_n7_9rD6Wd___vFrdXdfGwEi18yyphHYGyE7NLS1etCNlZYPgnNqqZAADRMWNbI1tIBra2TDbWOxZQw0X5Kve92QslPJuIxmU8705TDFSlDed4W63FPbGJ5nTFlNLhkcR-0xzEmBKPtbLjtW0Ks9amJIKeKgttFNOr4qoGrnhAJ1cKKwFwfZeT2h_U9-vJ7_A6vghJ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1446873682</pqid></control><display><type>article</type><title>Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><source>American Institute of Physics</source><creator>Huo, Pengfei ; Miller, 3rd, Thomas F ; Coker, David F</creator><creatorcontrib>Huo, Pengfei ; Miller, 3rd, Thomas F ; Coker, David F</creatorcontrib><description>A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/1.4826163</identifier><identifier>PMID: 24160492</identifier><language>eng</language><publisher>United States</publisher><subject>CHARGE EXCHANGE ; CORRELATION FUNCTIONS ; ELECTRON TRANSFER ; Electron Transport ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; PATH INTEGRALS ; Quantum Theory ; REACTION KINETICS ; SIMULATION ; Thermodynamics ; Time Factors</subject><ispartof>The Journal of chemical physics, 2013-10, Vol.139 (15), p.151103-151103</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3</citedby><cites>FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,779,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24160492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/22220398$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Huo, Pengfei</creatorcontrib><creatorcontrib>Miller, 3rd, Thomas F</creatorcontrib><creatorcontrib>Coker, David F</creatorcontrib><title>Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.</description><subject>CHARGE EXCHANGE</subject><subject>CORRELATION FUNCTIONS</subject><subject>ELECTRON TRANSFER</subject><subject>Electron Transport</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>PATH INTEGRALS</subject><subject>Quantum Theory</subject><subject>REACTION KINETICS</subject><subject>SIMULATION</subject><subject>Thermodynamics</subject><subject>Time Factors</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo9kU1P5DAMhqPVomUYOPAHUKW9wKEQJ2nackOj_ZKQdg_sOcokLhPUJkOSIsGv3wwzrC-W7MevLb-EnAO9Bir5DVyLjkmQ_BNZAO36upU9_UwWlDKoe0nlMTlJ6YlSCi0TX8gxEyCp6NmCpFWYptk7o7ML_rb6E9E6k90LVlsds9NjNTqPOro3tKWUN5XzGR9jaSQ3zeP7XBWGygRv0acdtdEJKxzR5Fh6OWqfBoyVffV6ciadkqNBjwnPDnlJ_n7_9rD6Wd___vFrdXdfGwEi18yyphHYGyE7NLS1etCNlZYPgnNqqZAADRMWNbI1tIBra2TDbWOxZQw0X5Kve92QslPJuIxmU8705TDFSlDed4W63FPbGJ5nTFlNLhkcR-0xzEmBKPtbLjtW0Ks9amJIKeKgttFNOr4qoGrnhAJ1cKKwFwfZeT2h_U9-vJ7_A6vghJ4</recordid><startdate>20131021</startdate><enddate>20131021</enddate><creator>Huo, Pengfei</creator><creator>Miller, 3rd, Thomas F</creator><creator>Coker, David F</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20131021</creationdate><title>Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics</title><author>Huo, Pengfei ; Miller, 3rd, Thomas F ; Coker, David F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>CHARGE EXCHANGE</topic><topic>CORRELATION FUNCTIONS</topic><topic>ELECTRON TRANSFER</topic><topic>Electron Transport</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>PATH INTEGRALS</topic><topic>Quantum Theory</topic><topic>REACTION KINETICS</topic><topic>SIMULATION</topic><topic>Thermodynamics</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huo, Pengfei</creatorcontrib><creatorcontrib>Miller, 3rd, Thomas F</creatorcontrib><creatorcontrib>Coker, David F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huo, Pengfei</au><au>Miller, 3rd, Thomas F</au><au>Coker, David F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2013-10-21</date><risdate>2013</risdate><volume>139</volume><issue>15</issue><spage>151103</spage><epage>151103</epage><pages>151103-151103</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><abstract>A partial linearized path integral approach is used to calculate the condensed phase electron transfer (ET) rate by directly evaluating the flux-flux/flux-side quantum time correlation functions. We demonstrate for a simple ET model that this approach can reliably capture the transition between non-adiabatic and adiabatic regimes as the electronic coupling is varied, while other commonly used semi-classical methods are less accurate over the broad range of electronic couplings considered. Further, we show that the approach reliably recovers the Marcus turnover as a function of thermodynamic driving force, giving highly accurate rates over four orders of magnitude from the normal to the inverted regimes. We also demonstrate that the approach yields accurate rate estimates over five orders of magnitude of inverse temperature. Finally, the approach outlined here accurately captures the electronic coherence in the flux-flux correlation function that is responsible for the decreased rate in the inverted regime.</abstract><cop>United States</cop><pmid>24160492</pmid><doi>10.1063/1.4826163</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2013-10, Vol.139 (15), p.151103-151103
issn 0021-9606
1089-7690
language eng
recordid cdi_osti_scitechconnect_22220398
source American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list); American Institute of Physics
subjects CHARGE EXCHANGE
CORRELATION FUNCTIONS
ELECTRON TRANSFER
Electron Transport
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
PATH INTEGRALS
Quantum Theory
REACTION KINETICS
SIMULATION
Thermodynamics
Time Factors
title Communication: Predictive partial linearized path integral simulation of condensed phase electron transfer dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T17%3A55%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Communication:%20Predictive%20partial%20linearized%20path%20integral%20simulation%20of%20condensed%20phase%20electron%20transfer%20dynamics&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Huo,%20Pengfei&rft.date=2013-10-21&rft.volume=139&rft.issue=15&rft.spage=151103&rft.epage=151103&rft.pages=151103-151103&rft.issn=0021-9606&rft.eissn=1089-7690&rft_id=info:doi/10.1063/1.4826163&rft_dat=%3Cproquest_osti_%3E1446873682%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-2d2554e9c468ec07dafa5d6d3f4330d04611524deae2b171ebdc653d5de7221a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1446873682&rft_id=info:pmid/24160492&rfr_iscdi=true